45. On Integrated Semigroups which are not Exponentially Bounded

By Isao MIYADERA,*) Masashi OKUBO,**) and Naoki TANAKA***)
(Communicated by Kiyosi ITÔ, M. J. A., June 8, 1993)

1. Introduction. Recently, as a generalization of the notion of exponentially bounded n-times integrated semigroups, Hieber [4] introduced that of exponentially bounded α -times integrated semigroups for positive numbers α and obtained interesting results by using Laplace transform techniques. But there exist integrated semigroups which are not exponentially bounded (and do not have the Laplace transforms) (see [5]). It is interesting to study the theory of α -times integrated semigroups which are not necessarily exponentially bounded. In this direction, some results in the special case where α is a nonnegative integer are found in Tanaka and Okazawa [6] and Thieme [7].

In this paper we deal with α -times integrated semigroups which are not necessarily exponentially bounded on a Banach space X for $\alpha \geq 0$. It should be noted that Laplace transform techniques are not available in our case. In §2 we investigate the basic properties of an α -times integrated semigroup and its generator. In §3 we give a characterization of the generator of an α -times integrated semigroup in terms of the associated abstract Cauchy problem. Applying this characterization we prove in §4 the following: (I) (Perturbation Theorem) If A generates an n-times integrated semigroup and if $B \in B(X)$ and R(B) (the range of $B \cap D(A^n)$) then A + B generates an n-times integrated semigroup. (II) (Adjoint Theorem) If A is the densely defined generator of an α -times integrated semigroup then the adjoint A^* of A generates a β -times integrated semigroup on the adjoint X^* of X for every $\beta > \alpha$. These extend [2, Corollary 3.5] and [4, Corollary 3.7]. The proofs of main results are sketched here, and the details will be published elsewhere.

2. α -times integrated semigroups. Let X be a Banach space with norm $\|\cdot\|$. We denote by B(X) the set of all bounded linear operators from X into itself. Generalizing [1, Definition 3.2] we introduce

Definition 2.1. Let α be a positive number. A family $\{U(t): t \geq 0\}$ in B(X) is called an α -times integrated semigroup on X, if

$$(a_1)$$
 $U(\cdot)x:[0,\infty)\to X$ is continuous for every $x\in X$,

$$(a_2) U(t) U(s) x = \frac{1}{\Gamma(\alpha)} \left(\int_t^{t+s} (t+s-r)^{\alpha-1} U(r) x dr - \int_0^s (t+s-r)^{\alpha-1} U(r) x dr \right)$$

for $x \in X$ and $t, s \ge 0$, where $\Gamma(\cdot)$ denotes the gamma function,

^{*)} Department of Mathematics, School of Education, Waseda University.

^{**)} Department of Mathematics, Nirasaki High School.

^{***)} Department of Mathematics, Faculty of Science, Okayama University.

(a₃) U(t)x = 0 for all t > 0 implies x = 0.

For convenience we call a semigroup of class (C_0) on X also 0-times integrated semigroup on X.

Definition 2.2. Let $\{U(t): t \geq 0\}$ be an α -times integrated semigroup on X, where $\alpha \geq 0$. The *generator* A of $\{U(t): t \geq 0\}$ is defined as follows:

$$x \in D(A)$$
 and $Ax = y$ if and only if $U(t)x = \int_0^t U(r)ydr + \frac{t^{\alpha}}{\Gamma(\alpha+1)}x$ for $t \ge 0$.

Remark 2.1. When $\alpha = 0$, our definition of the generator coincides with that of the infinitesimal generator of a semigroup of class (C_0) .

Proposition 2.1. Let A be the generator of an α -times integrated semigroup $\{U(t): t \geq 0\}$ on X, where $\alpha \geq 0$. Then A is a closed linear operator in X, and we have:

(2.1) $U(t)x \in D(A)$ and AU(t)x = U(t)Ax for $x \in D(A)$ and $t \ge 0$,

(2.2)
$$\int_0^t U(r)xdr \in D(A) \text{ and } A \int_0^t U(r)xdr = U(t)x - \frac{t^{\alpha}}{\Gamma(\alpha+1)}x \text{ for } x \in X \text{ and } t \ge 0.$$

Proposition 2.2. Let $\{V(t): t \geq 0\}$ be a family in B(X) such that $V(\cdot)x: [0, \infty) \to X$ is continuous for every $x \in X$, and let B be a closed linear operator in X. Let $\alpha \geq 0$. If $\{V(t): t \geq 0\}$ satisfies two conditions

(i)
$$\int_0^t V(s)xds \in D(B)$$
 and $V(t)x = B \int_0^t V(s)xds + \frac{t^{\alpha}}{\Gamma(\alpha+1)}x$ for $x \in X$ and $t \ge 0$,

(ii)
$$V(t)x = \int_0^t V(s)Bxds + \frac{t^{\alpha}}{\Gamma(\alpha+1)}x \text{ for } x \in D(B) \text{ and } t \ge 0,$$

then there exists an $\omega \geq 0$ such that $(\omega, \infty) \subset \rho(B)$ (the resolvent set of B).

Sketch of proof. Let $\tau > 0$ be fixed. For $\lambda > 0$ we define $R_{\tau}(\lambda) \in$

$$B(X)$$
 by $R_{\tau}(\lambda)x = \lambda^{\alpha} \int_{0}^{\tau} e^{-\lambda t} V(t)xdt$ for $x \in X$. Using the identity

$$R_{\tau}(\lambda)x = \lambda^{\alpha}e^{-\lambda\tau}\left(\int_{0}^{\tau}V(s)xds\right) + \lambda^{\alpha+1}\int_{0}^{\tau}e^{-\lambda\tau}\left(\int_{0}^{t}V(s)xds\right)dt$$

we deduce from the condition (i) that $R_{\tau}(\lambda)x \in D(B)$ and

$$\begin{split} BR_{\tau}(\lambda)x &= \lambda^{\alpha}e^{-\lambda\tau}\left(V(\tau)x - \frac{\tau^{\alpha}}{\Gamma(\alpha+1)}x\right) + \\ \lambda^{\alpha+1}\int_{0}^{\tau}e^{-\lambda t}\Big(V(t)x - \frac{t^{\alpha}}{\Gamma(\alpha+1)}x\Big)\,dt \end{split}$$

for $x \in X$ and $\lambda > 0$. Hence

(2.3)
$$(\lambda I - B)R_{\tau}(\lambda)x = (I - Q_{\tau}(\lambda))x$$
 for $x \in X$ and $\lambda > 0$,

where
$$Q_{\tau}(\lambda)x = \lambda^{\alpha}e^{-\lambda\tau}\left(V(\tau)x - \frac{\tau^{\alpha}}{\Gamma(\alpha+1)}x\right) + \frac{1}{\Gamma(\alpha+1)}\int_{\lambda\tau}^{\infty}e^{-t}t^{\alpha}dt \cdot x$$

for
$$x \in X$$
 and $\lambda > 0$. Combining (i) and (ii) yields $B \int_0^t V(s) x ds =$

 $\int_0^t V(s)Bxds \text{ for } x \in D(B) \text{ and } t \geq 0. \text{ Using this fact and the closedness of } B \text{ we see that } R_\tau(\lambda)Bx = BR_\tau(\lambda)x \text{ for } x \in D(B), \text{ and then }$

(2.4) $R_{\tau}(\lambda)(\lambda I - B)x = (I - Q_{\tau}(\lambda))x$ for $x \in D(B)$ and $\lambda > 0$. Since $\|Q_{\tau}(\lambda)\| \to 0$ as $\lambda \to \infty$, we can choose an $\omega > 0$ such that $\|Q_{\tau}(\lambda)\| < 1$ for $\lambda > \omega$. Hence $(I - Q_{\tau}(\lambda))^{-1} \in B(X)$ if $\lambda > \omega$. This fact together with the relations (2.3) and (2.4) shows $(\omega, \infty) \subset \rho(B)$.

As a direct consequence of Propositions 2.1 and 2.2 we have

Corollary 2.3. Let $\alpha \geq 0$. If A is the generator of an α -times integrated semigroup on X, then there exists an $\omega > 0$ such that $(\omega, \infty) \subset \rho(A)$.

Proposition 2.4. Let $\alpha \geq 0$. (1) Let A be the generator of an α -times integrated semigroup $\{U(t): t \geq 0\}$ on X. If $u \in C([0, T]; X)$ satisfies $u(t) = A \int_0^t u(s) ds$ for $0 \leq t \leq T$, then u(t) = 0 for $0 \leq t \leq T$. (2) Every α -times integrated semigroup is uniquely determined by its generator.

Definition 2.3. If an α -times integrated semigroup $\{U(t): t \geq 0\}$ on X, where $\alpha \geq 0$, satisfies the exponential growth condition (a₄) there exist positive numbers M and α such that $\|U(t)\| \leq Me^{at}$ for $t \geq 0$, then it is called an *exponentially bounded* α -times integrated semigroup on X.

Proposition 2.5. Let $\{U(t): t \geq 0\}$ be an α -times integrated semigroup on X satisfying the condition (a_4) , and let A be the generator of $\{U(t): t \geq 0\}$. Then $(a, \infty) \subset \rho(A)$ and $R(\lambda; A)x = \lambda^{\alpha} \int_0^{\infty} e^{-\lambda t} U(t)x \, dt$ for $x \in X$ and $\lambda > a$.

Sketch of proof. Since A is closed we deduce from (2.2) that $A\left(\lambda^{\alpha+1}\int_0^\infty e^{-\lambda t}\left(\int_0^t U(s)xds\right)dt\right)=\lambda^{\alpha+1}\int_0^\infty e^{-\lambda t}\left(U(t)x-\frac{t^\alpha}{\Gamma(\alpha+1)}x\right)dt\;;$ hence $(\lambda I-A)\left(\lambda^\alpha\int_0^\infty e^{-\lambda t}\ U(t)xdt\right)=x\;\text{for}\;x\in X\;\text{and}\;\lambda>a.$ Combining this and (2.1) we have $\lambda^\alpha\int_0^\infty e^{-\lambda t}\ U(t)\left(\lambda I-A\right)xdt=x\;\text{for}\;x\in D(A)$ and $\lambda>a.$

Remark 2.2. Proposition 2.5 shows that if an α -times integrated semigroup is exponentially bounded then our definition of the generator coincides with that due to Hieber [4].

3. Abstract Cauchy problems. Let A be a closed linear operator in X and $x \in X$. We consider the following abstract Cauchy problem (for A):

(ACP; x) u'(t) = Au(t) for $t \ge 0$, and u(0) = x.

By a classical solution u to (ACP; x) we mean that $u \in C^1([0, \infty); X)$ and u(t) satisfies the above equation (ACP; x). Since A is closed, u is a classical solution to (ACP; x) if and only if $u \in C^1([0, \infty); X)$ and u(t) satisfies the following integral equation

$$(ACP; x)_0 u(t) = A \int_0^t u(s) ds + x for t \ge 0.$$

Now, let $\alpha \geq 0$ and consider the following integral equation which is the α -times integral version of (ACP; x) $_0$:

$$(ACP; x)_{\alpha}$$
 $u(t) = A \int_{0}^{t} u(s) ds + \frac{t^{\alpha}}{\Gamma(\alpha + 1)} x$ for $t \ge 0$.

Definition 3.1. If $u \in C([0, \infty); X)$ and u(t) satisfies $(ACP; x)_{\alpha}$ then u is called a *solution* to $(ACP; x)_{\alpha}$.

The following theorem extends and improves [7, Theorem 6.2].

Theorem 3.1. Let $\alpha \geq 0$. An operator A is the generator of an α -times integrated semigroup on X if and only if A is a closed linear operator in X and the $(ACP; x)_{\alpha}$ has a unique solution for every $x \in X$.

Sketch of proof. If A is the generator of an α -times integrated semigroup $\{U(t):t\geq 0\}$ on X, then it follows from Propositions 2.1 and 2.4 (1) that A is a closed linear operator in X and $U(\cdot)x$ is a unique solution to $(ACP; x)_{\alpha}$ for every $x \in X$. To prove the converse, let $u(\cdot; x)$ be the unique solution to $(ACP; x)_{\alpha}$. For $t \ge 0$ we define $U(t): X \to X$ by U(t)x =u(t;x) for $x \in X$. Clearly, each U(t) is a linear operator in X. To show $U(t) \in B(X)$ we consider an F-space (in the sense of [3]) $C([0, \infty)$; X) with the quasi-norm $\sum_{k=1}^{\infty} \|v\|_{k}/2^{k}(1+\|v\|_{k})$ for $v \in C([0,\infty);X)$, where $\|v\|_k = \max\{\|v(t)\|: 0 \le t \le k\}$ for $k = 1,2,3,\cdots$ and a linear operator $T: X \to C([0, \infty); X)$ defined by $Tx = U(\cdot)x$ for $x \in X$. We then see that T is closed. By the closed graph theorem (see [3, Theorem 2.2.4]), T is continuous from X into $C([0, \infty); X)$. This shows that each $U(t): X \to X$ is continuous, that is, $U(t) \in B(X)$. If $\alpha = 0$ then we see that $\{U(t): t \geq 0\}$ is a semigroup of class (C_0) . Next, we consider the case where $\alpha > 0$. It is clear that $\{U(t) : t \ge 0\}$ satisfies (a_1) and (a_3) in Definition 2.1. To show (a_2) , let $s \ge 0$ and $x \in X$ be arbitrarily fixed and set

$$v(t) = \frac{1}{\Gamma(\alpha)} \left(\int_{s}^{t+s} (t+s-r)^{\alpha-1} U(r) x dr - \int_{0}^{t} (t+s-r)^{\alpha-1} U(r) x dr \right)$$

for $t \geq 0$. Then we see that $A \int_0^\tau v(t) dt = v(\tau) - \frac{\tau^\alpha}{\Gamma(\alpha+1)} U(s) x$ for $\tau \geq 0$, which means that v is a solution to $(ACP; U(s)x)_\alpha$ and hence (by the uniqueness of solutions) v(t) = u(t; U(s)x) = U(t) U(s) x for $t \geq 0$. Thus (a_2) is satisfied. To show that A is the generator of the α -times integrated semigroup $\{U(t): t \geq 0\}$, let B be the generator of $\{U(t): t \geq 0\}$. Let $x \in D(A)$ and set $w(t) = \int_0^t u(s; Ax) ds + \frac{t^\alpha}{\Gamma(\alpha+1)} x$ for $t \geq 0$. Since u(s; Ax) = Aw(s) for $s \geq 0$, we see that w is a solution to $(ACP; x)_\alpha$. The uniqueness of solutions shows w(t) = u(t; x), namely

(3.1)
$$U(t)x = \int_0^t U(s)Axds + \frac{t^{\alpha}}{\Gamma(\alpha+1)}x$$
 for $x \in D(A)$ and $t \ge 0$.

By (3.1) and $U(t)z=A\int_0^t U(r)zdr+\frac{t^\alpha}{\Gamma(\alpha+1)}z$ for $z\in X$ and $t\geq 0$, we deduce from Proposition 2.2 that $(\omega,\infty)\subset \rho(A)$ for some $\omega>0$. Combining this fact and Corollary 2.3, we obtain $\rho(A)\cap \rho(B)\neq\emptyset$. From this fact and the relation that $A\subset B$ (by (3.1)) it follows that A=B.

In the special case where α is a nonnegative integer we may prove

Theorem 3.2. Let α be a nonnegative integer. Then the equivalent conditions in Theorem 3.1 are equivalent to the statement that A is a closed linear operator in X with nonempty resolvent set and the (ACP; x) has a unique clas-

sical solution for every $x \in D(A^{\alpha+1})$.

4. Applications. This section is devoted to applications of Theorem 3.1. We start with the following perturbation theorem.

Theorem 4.1. Let A be the generator of an n-times integrated semigroup $\{U(t):t\geq 0\}$ on X, where n is a nonnegative integer. If $B\in B(X)$ and $R(B)\subset D(A^n)$, then A+B is the generator of an n-times integrated semigroup on X. In the special case where $\{U(t):t\geq 0\}$ satisfies the condition (a_4) , the n-times integrated semigroup $\{V(t):t\geq 0\}$ generated by A+B satisfies the estimate that $\|V(t)\|\leq Me^{(a+K)t}$ for $t\geq 0$, where $K=M\|A^nB\|+\max_{0\leq k\leq n-1}(\|A^kB\|/a^k)$.

Sketch of proof. We shall consider the case where $n \ge 1$. Let $x \in X$ and $T \in (0, \infty)$ be arbitrarily fixed. We consider the Banach space C([0, T]; X) with supremum norm and define an operator $W: C([0, T]; X) \to C([0, T]; X)$ by

$$(Wf)(t) = U(t)x + (d^{n}/dt^{n}) \int_{0}^{t} U(t-s)Bf(s)ds$$

$$\left(= U(t)x + \int_{0}^{t} U(t-s)A^{n}Bf(s)ds + \int_{0}^{t} \sum_{k=0}^{n-1} \frac{(t-s)^{k}}{k!} A^{k}Bf(s)ds \right)$$

for $f \in C([0, T]; X)$. Here we note that W is well-defined since $A^k B \in B(X)$ for every k with $0 \le k \le n$, by the closed graph theorem. Then, the fixed point theorem asserts that W has a unique fixed point. Therefore it is seen that for every $x \in X$ and T > 0 there exists a unique element $v_{x,T} \in X$

$$C([0, T]; X)$$
 such that $v_{x,T}(t) = U(t)x + (d^n/dt^n) \int_0^t U(t-s)Bv_{x,T}(s)ds$ for $0 \le t \le T$. Now, for each $x \in X$ we define $v_x: [0, \infty) \to X$ by $v_x(t) = v_{x,T}(t)$ if $0 \le t \le T$. Then v_x is a unique element in $C([0, \infty); X)$

satisfying

$$v_x(t) = U(t)x + (d^n/dt^n) \int_0^t U(t-s)Bv_x(s) ds$$

for $t \geq 0$. We see that for every $x \in X$, v_x is the unique solution to (ACP; $x)_n$ for the operator A+B. Clearly, A+B is a closed linear operator in X. By virtue of Theorem 3.1, A+B is the generator of an n-times integrated semigroup $\{V(t): t \geq 0\}$ defined by $V(t)x = v_x(t)$ for $x \in X$ and $t \geq 0$.

Finally, suppose that $\{U(t): t \geq 0\}$ satisfies the condition (a_4) . We find the estimate that $\|V(t)x\| \leq Me^{at} \|x\| + K\int_0^t e^{a(t-s)} \|V(s)x\| \, ds$, namely

$$e^{-at} \| V(t)x \| \le M \| x \| + K \int_0^t e^{-as} \| V(s)x \| ds$$

for $x \in X$ and $t \ge 0$, where $K = M \|A^n B\| + \max_{0 \le k \le n-1} (\|A^k B\|/a^k)$. The Gronwall inequality shows $e^{-at} \|V(t)x\| \le Me^{Kt} \|x\|$ for $x \in X$ and $t \ge 0$.

As an another application we give the following adjoint theorem.

Theorem 4.2. Let A be the densely defined generator of an α -times integrated semigroup $\{U(t): t \geq 0\}$ on X, where $\alpha \geq 0$. Then we have:

(i) The adjoint A^* of A is the generator of an $(\alpha + \gamma)$ -times integrated semigroup on the adjoint X^* of X for every $\gamma > 0$. (ii) $\{U(t)^* |_{\overline{D(A^*)}}: t \geq 0\}$ is an

 $\frac{\alpha\text{-times}}{D(A^*)}$, where $U(t)^*|_{\overline{D(A^*)}}$ denotes the restriction of $U(t)^*$ to $\overline{D(A^*)}$. Sketch of proof for (i). Let $\gamma > 0$ and define $V(t) \in B(X)$ for $t \ge 0$ by

Sketch of proof for (i). Let $\gamma > 0$ and define $V(t) \in B(X)$ for $t \geq 0$ by $V(t)x = \int_0^t \frac{(t-s)^{\gamma-1}}{\Gamma(\gamma)} U(s)xds$ for $x \in X$. It is seen that $V(\cdot)^*x^* \in C([0,\infty);X^*)$ for every $x^* \in X^*$. By Theorem 3.1 we see that A is the generator of the $(\alpha+\gamma)$ -times integrated semigroup $\{V(t):t\geq 0\}$ on X; hence $\int_0^t V(r)Axdr = V(t)x - \frac{t^{\alpha+\gamma}}{\Gamma(\alpha+\gamma+1)}x$ for $x \in D(A)$ and $t \geq 0$. Using this we have

$$(Ax, \int_0^t V(r)^* x^* dr) = (\int_0^t V(r) Ax dr, x^*) = (x, V(t)^* x^* - \frac{t^{\alpha+\tau}}{\Gamma(\alpha+\tau+1)} x^*)$$

for $x\in D(A)$, $x^*\in X^*$ and $t\geq 0$. From the definition of the adjoint we deduce that $\int_0^t V(r)^*x^*dr\in D(A^*)$ and $A^*\int_0^t V(r)^*x^*dr=V(t)^*x^*-\frac{t^{\alpha+\gamma}}{\Gamma(\alpha+\gamma+1)}x^*$ for $x^*\in X^*$ and $t\geq 0$. This means that for every $x^*\in X^*$, $V(\cdot)^*x^*$ is a solution to $(ACP;x^*)_{\alpha+\gamma}$ for the operator A^* . To show the uniqueness of solutions, let $u^*(\cdot)$ be a solution to $(ACP;x^*)_{\alpha+\gamma}$ and set $w^*(t)=V(t)^*x^*-u^*(t)$ for $t\geq 0$. Then we see that $w^*(\cdot)\in C([0,\infty);X^*)$ and $w^*(t)=A^*\int_0^t w^*(r)dr$ for $t\geq 0$. Combining this with $(d/ds)V(t-s)x=-AV(t-s)x-\frac{(t-s)^{\alpha+\gamma-1}}{\Gamma(\alpha+\gamma)}x$ for $x\in D(A)$ and $0\leq s\leq t$, we find

 $(d/ds) (V(t-s)x, \int_0^s w^*(r)dr) = -\Big(x, \frac{(t-s)^{\alpha+\tau-1}}{\Gamma(\alpha+\gamma)} \int_0^s w^*(r)dr \Big)$ for $x \in D(A)$ and $0 \le s \le t$. Integrating this over [0,t] and noting V(0)=0, we see that $\Big(x, \int_0^t \frac{(t-s)^{\alpha+\tau-1}}{\Gamma(\alpha+\gamma)} \Big(\int_0^s w^*(r)dr \Big) ds \Big) = 0$ for $x \in D(A)$ and $t \ge 0$. Since D(A) is dense in X we have $\int_0^t \frac{(t-s)^{\alpha+\tau-1}}{\Gamma(\alpha+\gamma)} \Big(\int_0^s w^*(r)dr \Big) ds = 0$; hence $w^*(t)=0$ for $t \ge 0$. By Theorem 3.1, $\{V(t)^*: t \ge 0\}$ is an $(\alpha+\gamma)$ -times integrated semigroup on X^* whose generator is A^* .

References

- [1] W. Arendt: Israel J. Math., 59, 327-352 (1987).
- [2] —: Lect. Notes in Pure and Applied Math., vol. 135, pp. 29-40 (1991).
- [3] N. Dunford and J. Schwartz: Linear Operator. part I. Interscience (1958).
- [4] M. Hieber: Forum Math., 3, 595-612 (1991).
- [5] H. Kellermann and M. Hieber: J. Funct. Anal., 84, 160-180 (1989).
- [6] N. Tanaka and N. Okazawa: Proc. London Math. Soc., 61, 63-90 (1990).
- [7] H. R. Thieme: J. Math. Anal. Appl., 152, 416-447 (1990).