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45. On Integrated Semigroups which are
not Exponentially Bounded

By Isao MIYADERA,*’ Masashi OKUBO,* *) and Naoki TANAKA * **)

(Communicated by Kiyosi ITO, M. J. A., June 8, 1993)

1. Introduction. Recently, as a generalization of the notion of exponen-
tially bounded #z-times integrated semigroups, Hieber [4] introduced that of
exponentially bounded a-times integrated semigroups for positive numbers &
and obtained interesting results by using Laplace transform techniques. But
there exist integrated semigroups which are not exponentially bounded (and
do not have the Laplace transforms) (see [5]). It is interesting to study the
theory of a-times integrated semigroups which are not necessarily exponen-
tially bounded. In this direction, some results in the special case where a is
a nonnegative integer are found in Tanaka and Okazawa [6] and Thieme [7].

" In this paper we deal with a-times integrated semigroups which are not
necessarily exponentially bounded on a Banach space X for & = 0. It should
be noted that Laplace transform techniques are not available in our case. In
§2 we investigate the basic properties of an a-times integrated semigroup
and its generator. In §3 we give a characterization of the generator of an
a-times integrated semigroup in terms of the associated abstract Cauchy
problem. Applying this characterization we prove in 84 the following: (I)
(Perturbation Theorem) If A generates an #-times integrated semigroup and
if B € B(X) and R(B) (the range of B) € D(A") then A + B generates an
n-times integrated semigroup. (II) (Adjoint Theorem) If A is the densely de-
fined generator of an a-times integrated semigroup then the adjoint A* of A
generates a [3-times integrated semigroup on the adjoint X* of X for every
B > a. These extend [2, Corollary 3.5] and [4, Corollary 3.7]. The proofs of
main results are sketched here, and the details will be published elsewhere.

2. a-times integrated semigroups. Let X be a Banach space with norm
|| || We denote by B(X) the set of all bounded linear operators from X into
itself. Generalizing [1, Definition 3.2] we introduce

Definition 2.1. Let a be a positive number. A family {U(#) : ¢ = 0} in
B(X) is called an a-times integrated semigroup on X, if
(a,) U()x : [0, ©) — X is continuous for every x € X,

(a)) U U = ﬁ ([Hs t+s— N UD xdr

- _/;s t+s— r)a_lU(r)xdr)

forx € X and t, s = 0, where I'(+) denotes the gamma function,
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(az) U(®x = 0 for all ¢t > 0 implies x = 0.

For convenience we call a semigroup of class (C,) on X also O-times in-
tegrated semigroup on X.

Definition 2.2. Let {U(#) : t = 0} be an a-times integrated semigroup
on X, where & = 0. The generator A of {U(#) : t = 0} is defined as follows:

t a

z € D(A) and Ax = y if and only if U®x = j: U(r)ydr + mx
for t = 0.

Remark 2.1. When a = 0, our definition of the generator coincides
with that of the infinitesimal generator of a semigroup of class (C,).

Proposition 2.1. Let A be the generator of an a-times integrated semigroup
{U® :t =0} on X, where @« = 0. Then A is a closed linear operator in X, and
we have:

(2.1) U®x € D(A) and AUOx = UW)Ax forx € D(A) and t = 0,
t t
(2.2) J; U xdr € DA) and A jo' U xdr = Uz —

r€ Xandt = 0.

Proposition 2.2. Let {V(®) :t= 0} be a family in B(X) such that
V()x : [0, °) = X is continuous for every x € X, and let B be a closed linear
operator in X. Let « = 0. If {V(®) : t = 0} satisfies two conditions

t t a
(i) [ Vzds € DB) ana V(o2 = B [ v©zds + ptrye
rE€ Xandt =0,

ta
Tt for

t a
(ii) Vx = j; V(s) Bxds + mxforz € D(B) and t = 0,

then there exists an w > 0 such that (w, ) C o(B) (the resolvent set of B).
Sketch of proof. Let T > 0 be fixed. For A > 0 we define R.(1) €

B(X) by R,(Dx = A“ f ¢ V() zdt for x € X. Using the identity
0

T T t
. ya —AitT a+1 —At
R.(Dx = 1% (J; V(s)xds) + A L e <j; V(s)xds) dt
we deduce from the condition (i) that R, (A)x € D(B) and
a
_ @ —at _ T
BR.(Wz = ¢ (V@z — prar 1y 7) +

a+1 [° —ar _ t*
A fo (Ve Ta+ D z) dt
for x € X and A > 0. Hence

(2.3) AI— BR,NDx=U— Q,(N))x forx € Xand A > 0,

— sa -2T Z'a 1 ” -t,a .
where Q,()x = A%e (V(T)x - mx) + Ta+D J. e tdt-x

t
for t € X and A > 0. Combining (i) and (ii) yields Bf V(s)xds =
0

t
j.: V(s) Bxds for x € D(B) and t = 0. Using this fact and the closedness of
B we see that R (1) Bx = BR_ () x for x € D(B), and then
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(24) R.ADQAI—Bx=U—- Q))x forx e D(B) and A > 0.
Since Q. () [—0 as A— o, we can choose an ® >0 such that
Q.| <1 for A > w. Hence (I — ()" € B(X) if A > w. This fact
together with the relations (2.3) and (2.4) shows (w, ) € p(B).

As a direct consequence of Propositions 2.1 and 2.2 we have

Corollary 2.3. Let « = 0. If A is the generator of an a-times integrated
semigroup on X, then there exists an w > 0 such that (w, ) < p(A).

Proposition 2.4, Let o = 0. (1) Let A be the generator of an a-times inte-
grated semigroup {U®D 1t =0} on X. If u € C(0, T1; X) satisfies u(t) =

t
A w(ds for 0St<T then u®=0 for 0St<T. (2) Every
0

a-times integrated semigroup is uniquely determined by its gemerator.
Definition 2.3. If an a-times integrated semigroup {U(#®) : ¢ = 0} on X,
where a = 0, satisfies the exponential growth condition
(a, there exist positive numbers M and a such that | U® | £ Me* for t = 0,
then it is called an exponentially bounded a-times integrated semigroup on X,
Proposition 2.5. Let {U(®) : t = 0} be an a-times integrated semigroup on
X satisfying the condition (a,), and let A be the gemerator of {U(#) : ¢t = 0}.

Then (a, ) < p(A) and R(A; A)x = Raf e M UWDzdt for x € X and
0

A> a
Sketch of proof. Since A is closed we deduce from (2.2) that

A(r l e j; UWads) dt) = 2 j; T (Ut - T(Tffmx) dt;

hence (11 — A) (/la f e U(t)xdt) =z for x € X and 1 > a. Combining
0 oo
this and (2.1) we have 2° f e U@ — A)xdt = x for x € D(A) and
0

1> a.

Remark 2.2. Proposition 2.5 shows that if an a-times integrated semi-
group is exponentially bounded then our definition of the generator coincides
with that due to Hieber [4].

3. Abstract Cauchy problems. Let A be a closed linear operator in X

and £ € X. We consider the following abstract Cauchy problem (for A):
(ACP ; ») w () = Au(® for t =0, and #(0) = x.
By a classical solution u to (ACP ; x) we mean that # € C'([0, ) ; X) and
u(f) satisfies the above equation (ACP ; x). Since A is closed, # is a classical
solution to (ACP ;zx) if and only if # € C'([0, ) ; X) and u(?) satisfies
the following integral equation

t
(ACP; x), u(t) = Af u(s)ds + x for t = 0.
0

Now, let @ = 0 and consider the following integral equation which is the
a-times integral version of (ACP ; x),:

t a
(ACP;x), u@® = Aj; u(s)ds + —I‘—(at_+'ﬁx for t = 0.



202 I. MIYADERA, M. OKUBO, and N. TANAKA [Vol. 69(A),

Definition 3.1. If u € C([0, %) ; X) and u(f) satisfies (ACP ; x), then
u is called a solution to (ACP ; x),,.

The following theorem extends and improves [7, Theorem 6.2].

Theorem 3.1. Let @ = 0. An operator A is the generator of an Q-times in-
tegrated semigroup on X if and only if A is a closed linear operator in X and the
(ACP ; 1), has a unique solution for every x € X.

Sketch of proof. If A is the generator of an a-times integrated semigroup
{U@® :t =0} on X, then it follows from Propositions 2.1 and 2.4 (1) that A
is a closed linear operator in X and U(:)x is a unique solution to
(ACP; x), for every x € X. To prove the converse, let #(-; x) be the uni-
que solution to (ACP ; x),. For t = 0 we define U() : X— X by UHx =
u(t; x) for x € X. Clearly, each U(#) is a linear operator in X. To show
U(t) € B(X) we consider an F-space (in the sense of [3]) C([0, ) ;
X) with the quasi-norm X, | l)||k/2k(1 + 2], for v & C([0, ) ; X),
where v, = max {|v® [|:0 < ¢t <k} for £k =1,2,3, -+ and a linear
operator T : X— C([0, ) ; X) defined by Tx = U(-)x for x € X. We
then see that T is closed. By the closed graph theorem (see [3, Theorem
2.2.4)), T is continuous from X into C([0, %) ; X). This shows that each
U(t) : X— X is continuous, that is, U(f) € B(X). If @ = 0 then we see that
{U® :t=0}is a semigroup of class (C,). Next, we consider the case
where a > 0. It is clear that {U(#) : t = 0} satisfies (a;) and (a,) in Defini-
tion 2.1. To show (a,), let s = 0 and x € X be arbitrarily fixed and set

v() = ﬁ (fm t+s— P UDxdr — jo‘t (t+s— r)a_lU(r)x(h')

for t = 0. Then we see that Af v(®)dt = v(7) —TT&T—_'_—I—)— U(s)x for
0

T 2 0, which means that v is a solution to (ACP ; U(s)x), and hence (by the
uniqueness of solutions) v(#) = u(t; U(s)x) = U@ U(s)x for t = 0. Thus
(a,) is satisfied. To show that A is the generator of the a-times integrated
semigroup {U( :t =0}, let B be the generator of {U(® :¢= 0}. Let

t a
x € D(A) and set w(d = f u(s ; Ax)ds + mx for t= 0. Since
0

u(s ; Ax) = Aw(s) for s = 0, we see that w is a solution to (ACP ; x),. The
uniqueness of solutions shows w(#) = (¢ ; x), namely

t a
(3.1) Uhx = j; U(s)Axds + T‘(—&t_'_—l)x for x € D(A) and t = 0.

t a
By (3.1) and U(Hz = Aj; U)zdr + T—(—a—t_i_—l)z for z€ X and t 2 0, we

deduce from Proposition 2.2 that (w, ) < p(A4) for some @ > 0. Combin-
ing this fact and Corollary 2.3, we obtain p(A) N p(B) # @. From this fact
and the relation that A € B (by (3.1)) it follows that A = B.
In the special case where «& is a nonnegative integer we may prove
Theorem 3.2. Let ¢ be a nonnegative integer. Then the equivalent condi-
tions in Theorem 3.1 are equivalent to the statement that A is a closed linear
operator in X with nonempty resolvent set and the (ACP ; x) has a unique clas-
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sical solution for every x € D(A*™).

4. Applications. This section is devoted to applications of Theorem
3.1. We start with the following perturbation theorem.

Theorem 4.1. Let A be the generator of an n-times integrated 'semigroup
{U® :t =0} on X, where n is a nonmegative integer. If B € B(X) and
R(B) € D(A"), then A+ B is the gemerator of an n-times integrated semi-
group on X. In the special case wheve {U(#) : t = 0} satisfies the condition (a,),
the n-times integrated semigroup {V(§) : t = 0} gemerated by A + B satisfies
the estimate that | V(|| < Me“™! for t=0, where K= M|A"B| +
maX, < <1 | A'B|/a").

Sketch of proof. We shall consider the case where # = 1. Let x € X and
T € (0, ©) be arbitrarily fixed. We consider the Banach space
C([0, T1; X) with supremum norm and define an operator W : C([0, T1;
X)) — C(0, T1; X) by

DB = Uz + @ /at") [ U= 9Bf(s)ds

(= vz + f Ut — ) A"Bf (s)ds + f P 1—(t———)—kAka(s)ds>

for f€ C([0, T]; X). Here we note that W is well-defined since A*'B e
B(X) for every k with 0 < k < n, by the closed graph theorem. Then, the
fixed point theorem asserts that W has a unique fixed point. Therefore it is
seen that for every x € X and T > 0 there exists a unique element v, €

C([0, T]; X) such that v, .(§ = Uz + (d"/dt") j;t U(t — s)Bu, ;(s)ds

for 0 < t < T. Now, for each £ € X we define v,: [0, ) = X by v,(}) =
v, r@® if 0<¢t< T Then v, is a unique element in C([0, %) ;X)
satisfying

0. (D = Uz + (@ /dt") fo Ut — 5)Bo,(s)ds

for t =2 0. We see that for every x € X, v, is the unique solution to (ACP;
x), for the operator A + B. Clearly, A + B is a closed linear operator in X.
By virtue of Theorem 3.1, A + B is the generator of an #-times integrated
semigroup {V(#) : ¢t = 0} defined by V(x = v,(f) for x € X and ¢t = 0.
Finally, suppose that {U(#) : t = 0} satisfies the condition (a,). We find

t
the estimate that | VO z || < Me® | = || + Kf 70| V(s)z | ds, namely
0

t
N VOl < Mzl + K f | Vis)z | ds

for £ € X and t = 0, where K = M||A"B | + max,<,<,_,(| A*B|/a"). The

Gronwall inequality shows ¢ * || V() z| < Me* | z| for x € X and t = 0.
As an another application we give the following adjoint theorem.
Theorem 4.2. Let A be the densely defined gemerator of an a-times inte-

grated semigroup {U(E) : t = 0} on X, where & = 0. Then we have:

(1) The adjoint A* of A is the gemevator of an (@ + 7)-times integrated semi-

group on the adjoint X of X for every ¥ > 0. (ii) UON |3a%: t = 0} is an
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a-times integrated semigroup on D(A”) whose generator is the part of A" in
D(A™), where UWD™ |5 denotes the restriction of U™ to D(A™).
Sketch of proof for (i). Let v > 0 and define V($) € B(X) for ¢t = 0 by

t—9s"" . * %
Vix = f —F(T) U(s)xds for x € X It is seen that V() zx

C([0, ) ; X™) for every 2™ € X*. By Theorem 3.1 we see that A is the
generator of the (a + 7)-times integrated semigroup {V(§) : ¢ = 0} on X;

a+r

hence f V(n)Azxdr = Vi x — mx for £ € D(A) and £ = 0.

Using this we have

(Ax, f: V(f’)*x*dr> = (j: V() Azdr, x*> _

(2, VO*s* = gy )
Z, T TTla+r+D
for x € D(A), ™ € X™ and ¢t > 0. From the definition of the adjoint we
t t
deduce that f V) *z* dr € DA™ and A* f V) *rrdr = VO *z*
0 0

a+r
¢

* * * > .
F(a+ T+ N for x° € X* and t= 0. This means that for every

e X*, V()*x" is a solution to (ACP x™) 44, for the operator A*. To
show the umqueness of solutlons let #™(+) be a solution to (ACP; z Y arr
and set w*(®) = V®O*x™ — u™(®) for t > 0. Then we see that w™(-) €

t
C([0, o) ;X*) and w* () = A* f w (D dr for t = 0. Combining this with

0 a+r—1
d/ds)Vt— s)xa= — AVt — s)x — %x for x € D(A) and

0 < s <t we find
s % _ (t _ S)a+7' 1
d/ds) (Vit — s)x, j; w (ndr) = (x, “Ta+tp f w (r)dr)

for x € D(A) and 0 < s < ¢, Integrating this over [0, #I and noting V(0) = 0,
t a+r 1
(t—

0 W <f w (1’)dr> ds) =0 for x € D(A) and

) . . O
t = 0. Since D(A) is dense in X we have | F(a+ D (f w (r)dr)
ds = 0; hence w () = 0 for t > 0. By Theorem 3.1, {V(®™:¢> 0} is an

(o + 7)-times integrated semigroup on X™ whose generator is A*,

we see that <x,
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