Hasse's Norm Theorem for K₂

By Yoshihiro KOYA

Department of Mathematics, Tokyo Institute of Technology (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1993)

1. Introduction and definitions. In this note, we shall present a description of Galois groups of the quotient field of 2-dimensional local ring and Hasse principle for K_2 of such fields by using hypercohomology and Lichtenbaum's complex $\mathbf{Z}(2)$. This note is an announcement of author's doctor thesis [2].

Unless the contrary is explicitly stated, we shall employ the following notation throughout this paper: For a field K, K_s is a fixed separable closure of K. Let G be a group and M a G-module. We denote M^G by $\Gamma(G,M)$, which is viewed as a functor. The symbol Z(2) stands for Lichtenbaum's complex. For definitions and properties on Lichtenbaum's complex, see [3] and [4]. In this note we shall freely use the standard notations on complexes and objects in derived categories as in [3] and [4].

Let A be a two dimensional complete normal local ring whose residue field F is a finite field, K its quotient field and P the set of all prime ideals of A of height one. For each $\mathfrak{p} \in P$, let $A_{\mathfrak{p}}$ be the completion of the localization of A at \mathfrak{p} , $K_{\mathfrak{p}}$ its quotient field and $\kappa(\mathfrak{p})$ the residue field of $A_{\mathfrak{p}}$. Note that by [6], $K_{\mathfrak{p}}$ is a two dimensional local field and $\kappa(\mathfrak{p})$ is a local field in the usual sense.

We shall construct the complex which represents K_2 -idele class group, which is defined in [6]. We define first an auxiliary complex. Under the above notation, let $L_{\mathfrak{B}}$ be a finite unramified extension of $K_{\mathfrak{p}}$, where \mathfrak{P} is a prime above \mathfrak{p} . Then the complex $Q(L_{\mathfrak{P}})$ [1] is defined to be the mapping cone of the following morphism of complexes:

$$\tau_{\leq 2} \mathbf{R} \Gamma(H_{\mathfrak{p}}, \mathbf{Z}(2)) \to F(\mathfrak{p})^{\times}[-2],$$

where $H_{\mathfrak{p}} = \operatorname{Gal}((K_s)_{\mathfrak{p}}/L_{\mathfrak{P}})$ and $F(\mathfrak{p})$ is the residue field of $L_{\mathfrak{P}}$.

We also define K_2 -idele complex. Let L be a finite extension of K. The complex I(L) is defined as follows. First we set

$$I^{\mathcal{S}}(L) = \prod_{\mathfrak{T} \leq 2} \mathbf{R} \Gamma(H_{\mathfrak{p}}, \mathbf{Z}(2)) \times \prod_{\mathfrak{T} \in \mathcal{S}} Q(L_{\mathfrak{P}})$$

 $I^{S}(L) = \prod_{\mathfrak{p} \in S} \tau_{\leq 2} \operatorname{\textbf{\it R}} \Gamma(H_{\mathfrak{p}}, \operatorname{\textbf{\it Z}}(2)) \times \prod_{\mathfrak{p} \in P-S} Q(L_{\mathfrak{P}}),$ for a finite subset S of P containing all the ramified primes in L/K. Then the I(L) is defined by

$$I(L) = \lim_{\stackrel{\longrightarrow}{s}} I^{s}(L).$$

The idele complex I_K is defined as

$$I_K = \lim_{\stackrel{\longrightarrow}{L}} I(L),$$

where the limit runs through all finite extensions of K.

Now we can define our K_2 -idele class complex. The complex C(L) is

defined by the mapping cone of the following morphism of complexes:

$$\tau_{\leq 2} R\Gamma(H, \mathbf{Z}(2)) \to I(L),$$

where $H = \operatorname{Gal}(K_s/L)$. And the "idele class complex" C_K is defined as follows:

$$C_K = \lim_{\stackrel{\longrightarrow}{L}} C(L).$$

Remark. We work in the category of complexes of G-modules. So in general the mapping cone are not canonically defined. But in our case we can construct C(L) in the category of complexes of G-modules, and our construction is canonical in the category of complexes.

Our K_2 -idele complex and K_2 -idele class complex have the following properties.

Proposition 1. (1)
$$C_K$$
 is acyclic outside [1, 2] (2) $H^2(\text{Gal}(K_s/K), C_K) = C_K$.

Here C_K is a K_2 -idele class group.

Proposition 2. $H^{3}(K, I_{\kappa}) = 0$.

2. Hasse principle. The aim of this section is to give an expression of $\operatorname{Gal}(L/K)^{ab}$ under some special conditions and prove Hasse's norm theorem for K_2 as one of application of modified hypercohomology, which is defined in [1] and is denoted here by $\hat{H}^q(G, *)$. The following theorem is our main result from technical viewpoint.

Theorem 3. Let L/K be a finite Galois extension such that the integral closure of A in the extension field L is regular. Then the finite group Gal (L/K) and the complex of Gal (L/K)-module $\tau_{\leq 0}R\Gamma$ (Gal (K_s/L) , $C_{\kappa}[2]$) satisfy the assumptions of the generalized Tate-Nakayama theorem.

From the previous theorem we get familiar description of Gal(L/K). Namely, by using the next theorem, we have the Corollary 5.

Theorem 4 (Generalized Tate-Nakayama theorem) [1, Thm.2.1]. Let G be a finite group, A a complex of G-modules such that except A^0 and $A^{(-1)}$ all terms are zero. Let a be an element of $\hat{H}^2(G, A')$. Assume that for each p-Sylow subgroup G_{b} of G:

- $\hat{H}^1(G_{\mathfrak{b}},A')=0.$ (1)
- (2) $\hat{H}^2(G_p, A')$ is generated by $\operatorname{Res}_{G/G_p}(a)$ whose order is equal to $|G_p|$. Then, for all $q \in \mathbf{Z}$ and all subgroup H of G,

$$\hat{H}^q(H, A') \simeq \hat{H}^{q-2}(H, \mathbf{Z}).$$

Corollary 5. Let L/K be a finite Galois extension of K. Assume that the integral closure of A in the field L is regular. Then we have the following isomorphism:

$$\operatorname{Gal}(L/K)^{ab} \simeq C_K/N_{L/K}C_L.$$

The proof of Thm. 3 can be reduced to the following Lemma 6, as in the case of classical class field theory.

Lemma 6. Let L/K be a finite Galois extension of K and M be any intermediate field of L/K. And assume that the integral closure of A in the field L is regular.

(1) For all integers q > 2, we have $H^{q}(M, C_{M}[2]) = 0$.

- (2) $H^{1}(M, C_{M}[2]) = 0.$
- (3) There is an isomorphism $\operatorname{inv}_M: H^2(M, C_M[2]) \to Q/Z$.
- (4) The following diagram is commutative;

$$H^{2}(M, C_{M}[2]) \xrightarrow{\text{Res}} H^{2}(N, C_{N}[2])$$

$$\downarrow \qquad \qquad \downarrow$$

$$Q/Z \xrightarrow{n} Q/Z$$

where M and N are intermediate fields of L/K such that $N \supset M$ and [N:M] = n.

In the proof of the above Lemma 6, we use Saito's Hasse principle in [7], which plays an important role.

As another application of modified hypercohomology, we obtain the "Hasse Principle in Relative Case".

Proposition 7. Let L/K be a finite Galois extension of K. Assume that the integral closure of A in the field L is regular. And let $\mathfrak P$ be a prime ideal of height one in the integral closure of A in L which is lying over $\mathfrak P$. Then the following sequence is exact;

$$0 \to \hat{H}^2(L/K, T) \to \bigoplus_{\mathfrak{p} \in P} \frac{1}{[L_{\mathfrak{P}} : K_{\mathfrak{p}}]} \, \mathbf{Z}/\mathbf{Z} \xrightarrow{\sigma} \frac{1}{[L : K]} \, \mathbf{Z}/\mathbf{Z} \to 0,$$

where $T = \tau_{\leq 0} R\Gamma(H, \mathbf{Z}(2)[2])$ and $H = Gal(K_s/L)$.

Corollary 8. Let L/K be a cyclic extension of K. Assume that the integral closure of A in the field L is regular. Let x be an element of K_2K . If for each $\mathfrak p$ the diagonal image of x is contained in $N_{L_{\mathfrak m}/K_n}K_2L_{\mathfrak p}$, then $x\in N_{L/K}K_2L$.

References

- Koya, Y.: A generalization of class formation by using hypercohomology. Invent. Math., 101, 705-715 (1990).
- [2] —: Hasse's norm theorem for K_2 . Doctor thesis, Tokyo Institute of Technology (1992).
- [3] Lichtenbaum, S.: Values of zeta functions at non-negative integers. Number Theory. Lect. Notes in Math., vol. 1068, Springer, Berlin, Heidelberg, New York, pp. 127-138 (1984).
- [4] —: The construction of weight-two arithmetic cohomology. Invent. Math., 88, 183-215 (1987).
- [5] Saito, S.: Arithmetic on two dimensional local rings. ibid., 85, 379-414 (1986).
- [6] —: Class field theory for curves over local fields. J. of Number Theory, 21, 44-80 (1985).
- [7] —: Class field theory for two dimensional local rings. Galois Representations and Arithmetic Algebraic Geometry. Adv. St. in Pure Math., 12, 343-373 (1987).