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1. Introduction and definitions. In this note, we shall present a de-
scription of Galois groups of the quotient field of 2-dimensional local ring
and Hasse principle for Kz of such fields by using hypercohomology and
Lichtenbaum’s complex Z(2). This note is an announcement of author’s doc-
tor thesis [2].

Unless the contrary is explicitly stated, we shall employ the following

notation throughout this paper: For a field K, K is a fixed separable clo-
sure of K. Let G be a group and M a G-module. We denote Ma

by I"(G, M),
which is viewed as a functor. The symbol Z(2)stands for Lichtenbaum’s
complex. For definitions and properties on Lichtenbaum’s complex, see [3]
and [4]. In this note we shall freely use the standard notations on complexes
and objects in derived categories as in [3] and [4].

Let A be a two dimensional complete normal local ring whose residue
field F is a finite field, K its quotient field and P the set of all prime ideals
of A of height one. For each p P, let A be the completion of the localiza-
tion of A at p, Ko its quotient field and (p) the residue field of A. Note that
by [6], K is a two dimensional local field and (p) is a local field in the
usual sense.

We shall construct the complex which represents Kz-idele class group,
which is defined in [6]. We define first an auxiliary complex. Under the
above notation, let L be a finite unramified extension of Ko, where is a

prime above . Then the complex Q(L)[1] is defined to be the mapping
cone of the following morphism of complexes:

r2RI-’(Ho, Z(2)) F(p)[-- 21,
where H Gal((Ks),/L,) and F(p) is the residue field of L.

We also define K2-idele complex. Let L be a finite extension of K. The
complex I(L) is defined as follows. First we set

Is(L) II r2RF(H,Z(2)) x II Q(L),
PS PP-S

for a finite subset S of P containing all the ramified primes in L/K. Then
the I(L) is defined by

I(L) lirn Is (L).
S

The idele complex IK is defined as

I lim I(L),
L

where the limit runs through all finite extensions of K.
Now we can define our K.-idele class complex. The complex C(L) is
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defined by the mapping cone of the following morphism of complexes"

v. RF(H, Z(2))-- I(L),
where H GaI(Ks/L). And the "idele class complex" CK is defined as fol-
lows

C lim C (L).
L

Remark. We work in the category of complexes of G-modules. So in
general the mapping cone are not canonically defined. But in our case we can
construct C(L)in the category of complexes of G-modules, and our con-

struction is canonical in the category of complexes.
Our K2-idele complex and K2-idele class complex have the following

properties.
Proposition 1. (1) CK is acyclic outside [1, 2]
(2) H(Gal(Ks/K), C) C.

Here C is a K2-idele class group.
Proposition 2. Ha(K, I) O.
2. Hasse principle. The aim of this section is to give an expression of

Gal(L/K) under some special conditions and prove Hasse’s norm theorem
for K as one of. application of modified hypercohomology, which is defined
in [1] and is denoted here by /(G, *). The following theorem is our main

result from technical viewpoint.
Theorem 3. Let L/K be a finite Galois extension such that the integral

closure of A in the extension field L is regular. Then the finite group
Gal (L/K) and the complex of Gal (L/K)-module roRF (Gal (Ks
C[2]) satisfy the assumptions of the generalized Tate-Nakayama theorem.

From the previous theorem we get familiar description of Gal(L/K).
Namely, by using the next theorem, we have the Corollary 5.

Theorem 4 (Generalized Tate-Nakayama theorem)[1, Thin.2.1]. Let G
be a finite group, A" a complex of G-modules such that except A and A-) all
terms are zero. Let a be an element of I21 (G, A’). Assume that for each p-Sylow
subgroup G of G"

(1) /(G, A’) 0.
(2)/-r(G, A’) is generated by Resv/v(a) whose order is equal to[ G I.

Then, for all q and all subgroup H of G,
(H, A’) [I- (H, Z).

Corollary 5. Let L/K be a finite Galois extension of K. Assume that the
integral closure of A in the field L is regular. Then we have the following iso-

morphism"
Gal(L/K) C/N/KCr.

The proof of Thm. 3 can be reduced to the following Lemma 6, as in the
case of classical class field theory.

Lemma 6. Let L/K be a finite Galois extension of K and M be any in-

termediate field of L/K. And assume that the integral closure of A in the field
L is regular.

,(1) For.all integers q > 2, we have H(M, CM[2]) 0.
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(2) H(M, C[2]) 0.
(3) There is an isomorphism invu" H(M, C[2]) ---* Q/Z.
(4) The following diagram is commutative"

Res

H(M, CM[2]) H (N, CN[2])

Q/Z Q/Z
where M and N are intermediate fields of L/K such that N M and [N M]

In the proof of the above Lemma 6, we use Saito’s Hasse principle in [7],
which plays an important role.

As another application of modified hypercohomology, we obtain the
"Hasse Principle in Relative Case".

Proposition 7. Let L/K be a finite Galois extension of K. Assume that the
integral closure of A in the field L is regular. And let 3 be a prime ideal of
height one in the integral closure of A in L which is lying over p. Then the fol-
lowing sequence is exact"

1 o 10-/2(L/K, T)--" [L" K,] Z/Z-- [L" K] Z/Z--" O,
PeP

where T V<o RF(H, Z(2) [2]) and H Gal(Ks/L).
Corollary 8. Let L/K be a cyclic extension of K. Assume that the integral

closure of A in the field L is regular. Let x be an element of K2K. If for each p
the diagonal image of x is contained in NL/KK2L, then x NL/K KeL.
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