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1. Recently E. N. Barron and R. Jensen [1] investigated a connection be-
tween the theory of risk for controlled finite dimensional state systems and
the theory of differential games. In the present note we will discuss the same
problems for infinite dimensional state systems on a finite time interval
[0, T] governed by parabolic equations.

Let W be a standard d-dimensional Wiener process on a probability
space (D, , P) and denote by o the a-field generated by {W(s);s N t}.
Let/ be a compact subset of Ra and be the space of all Borel measurable

Ixlfunction u Rn-- F endowed with the Le(Rn--* R e- dx)-topology,
called a control region. A map U" [0, T] x $2--* is called an admissible
control, if it is t-progressively measurable.

Putting H L2(R") and

A 2= Ox ) + --1 r (x)-fX - c(x),

we consider the controlled system e governed by the parabolic equation in a
random environment"

(1) -t (t, x) A(t, x) + b(x, (t, x), y + W(t), U(t, x)), for t (0, T),

X Rn
with initial condition (0, r/( H)

Let us assume the following conditions (A1) "--(Ah).
(A1) a and r are in Ca(R’), with finite Ca-norm,
(A2) the matrix (ai(x))is uniformly positive difinite, say (ai(x))>_ fiI
where I n x n identity matrix and fi > 0,
(A3) c is bounded, continuous and non-negative,
(A4) b ;R x R x Re x F-’* R is bounded and Lipschitz continuous,
(Ah) there is / e H, such that /(x)is decreasing, as xl ---oo and
b(x, a, y, u) (x) for any a, y and u.
By (A2), --A is coercive, namely there is a non-negative constant /2, such
that
(A2)’ (-- A, ) + p >- o for e H,
where ( ) duality pairing between H- and H I.

Define fl ;H Ra /---* H by (, g, u)(x) b(x, (x), y, u(x)).

Let us put m(a) f min ([ a(x)[, (x)Z)dx. Then (A4) implies

(2) 3 y, u) y’, u’) < k <ll + m (y y’) + m (u u’))
with a constant k. In view of the fact that A generates a continuous semi-
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tA
group e on H, is called a mild solution of (1), if

tA (t- s)A(t) e r + e fl((s), y + W(s), U(s))ds for t [0, T].

with probability 1. Using (2), we can easily prove the following’
Theorem 1. There is a unique mild solution ( 7, Y, U) of (1).

Moreover
(3) I](t, r, y, (t, ’,y’, l K (]]-- ’l]+m(y--Y’))
holds with a constant k independent of U, t and

2. Let h;H R be bounded and Lipschitz continuous. Moreover we
assume
(A6) there is F;[0, )R, which is decreasing to 0 and ]h()-
h(’) F(R) <ll v + II) whenever
For example, h() ((, e}," (, e}) with e H and smooth func-
tion on R, where ( } inner product.

In this note, we deal with a running cost given by h and (risk averse)
utility given by exponential function Q(a)=- exp(-a/c), with c > 0.
So our problem is to maximize the expected value, ]c(t, , y,

E h((s, , , )ds over the class of admissible controls.

According to the theory of risk, 1/c is index of risk aversion, and the vale

fnction v and the certainty equivalent vale fnction V are defined by
v(t, , y) supvJ(t, , y, and V(t, , y) Q2(v(t, , y))

respectively. Therefore we see that
(4) Vc(t, , y) t h I.

If V is smooth and its Frchet derivative V(t, ,y) belongs to H,
then V satisfies the so-called Bellman equation"

(5) Ot OV, v+ I%vl sup.a (OV, fl(, y, u))

A*h() 0 where dual operator of A, Vv gradient w. r. to y and

Av- Laplacian w. r. to y.
Although V is generally non-smooth, Vc still satisfies (5) in the viscos-

ity sense" see the next section, Theorem 3.
3. Recalling the definition of viscosity solutions due to Crandall and

Lions [3] and modifying it slightly, we will define the viscosity solutions of
the equation (6) below, that is more general than (5). Ctt((0, H
x Ra) is called a test function, if

# and / i- l’"d, are weakly lower semi-continuous in (0,

H x Ra
and bounded from below.

(ii) O(t, ,y) H and A*# is continuous and locally bounded,
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(6) Ot OyiOv 0,

where F C([0, T] H Rd H Rd Sa), Sn
set of d d sym-

metric matrices and F satisfies the ellipticity condition" F(t, rl, y, , z, B)
<_ F(t, rl, y, , z, D) whenever B_> D and (t, ri, y, , z) [0, T] ’H
X Rd H x Rd.

Definition. Let v C([0, T] H x Rd) be bounded and weakly
continuous, v is called a subsolution (resp. supersolution) of (6), if the follow-
ing condition (i) (resp. (ii)) holds for any test function and any radial func-
tion g"

If v- --g has a global maximum at 2 (, r, !) with (0, T),
then

t (’) (A*(P(), ) + F(., (.) + g(.), ( OyiOy

(ii) If v + + g has a global minimum at 2- (i, , i) with / (0, T),
then

t

where p is the constant of (A2)’.
v is called a viscosity solution, if it is both a subsolution and a supersolution.

Remark. In the defenition above, we can replace "global" by "strictly
global".

Let p; [0, ) [0, 1] be smooth and decreasing and p 1 on [0, 1]
and p 0 on [2, ). For any fixed R > 0, we put Fe(x)= p([x[/R).
According to [6], we will evaluate the modulus of continuity of Vc, which is
used later. Hereafter k denotes a positive constant independent of t, , y,, c and R.

Theorem 2. There is a positive constant K independent of c and R such
that
(7) IVy(t, rl, y) V(t’, r]’, Y’) <-It-

1

Outline of pwof Set B (I--A) -. Then we can easily show the
structural condition"
(--A*B, ) 2 2 + O (B, ) for anyU
with > 0and 0 R.

Putting (t) (t, , y, (t, ’, y, and F-FR for simplic-
ity, we evaluate the dynamics of [IF(t)II (= (BF(t), F(t) )) and use
the structural condition to obtain

dt V (t) < kt <o + k<ll (0 +
Now, putting = ( , y, , ’= ( ’, y’, and -- ’, and



122 M. NIsIO [Vol. 69(A),

using (3), we have
1 2).(8) F(s) ds g ka(ll r( 7’)112-1 +-11 7 ’ + m(y y’)

Next we evaluate ]c, using [5].

h((s))ds h(r(s))ds + h((s)) h(r(s))ds

h(r’(s))ds + (k4<ll II_ + + m(y y’)

+ F(R)(ll v + ’ + II)) + It- t’l h }

by, virture of (8). Put G inside of { }. Then we have

Jc t 7 y, U) <_ Jc t’, 7", y’, U) exp(- G / c)
In the same way, we have

](t, , y, U) > ](t’, ’, y’, U) exp(G/c).
So, v satisfies the same inequalities. Applying Q-I to both sides of the ine-

quality above, we complete the proof.
Since (7) implies the weak continuity of Vc, we use It6’s formula to

prove that (4) implies the following theorem.
Theorem 3. V is a viscosity solution of the Bellman equation (5).
Outline of proof. For simplicity, we delete the suffix c. Let -- (, r,

z)) ( (0, T) H Ra) be a strictly global maximum point of V-- q)- g.
Since Q is increasing, we get

v(z) < V(fb(z) (5) + g(r]) g(r) + V(5)) for z 4= .
Putting l(z) V(q)(z) q)(2) + g(7) g(O) + V(z)) V(g(7) g(O)
+ V(2)) and J(7) Q(g(7) -g() + V(2)) Q(V(2)), we have v(z)
v(5) < I(z) + J(7). Since v satisfies the dynammic programming principle,
we obtain

0 < supv E[I(-- O, (0), + W(O)) + ]((0))

( ( lfo+ v(f-- O, (0), z)+ W(O)) exp -- h((s))ds 1

Using It6’s formula, we evaluate each term to conclude that v is a subsolu-
tion. In the same way we can prove that v is .a supersolution. This completes
the proof.

4. Let us set
Y {Y [0, T] Re

image set Y[0, T] is bounded}
Z {Z [0, T] ---’ s4, measurable}
M {a;Z---* Y, non-anticipative}
N {/3 Y--- Z, non-anticipative}

where cr is said to be non-anticipative if c(10(’)= c(Y’)(’)on [0, t],
whenever Y Y’ on [0, t]. Y(resp. Z) is called a control for nature (resp.
player) and cr(resp. /3) a strategy for nature (resp. player). For a partition
zr {0 to <" <tp T}, Y is called zr-admissible, if Y(t) Y(tj) for

t[tj, t+), and Y the set of zr-admissible controls, cr is called
zr-admissible, if c ;Z--’* Y and c(Z)(s)is independent of Z, for s
[0, tx). M denotes the set of re-admissible strategies and M* U M, Z,
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N and N* are defined in the same way.
For Y Y and Z Z, we consider the system X in H, governed by (9).

dX(9) dt (t) AX(t) + fl(X(t), Y(t), Z(t))

with initial condition X(0)
(9) has a unique mild solution X( r/, Y, Z) and a criterion is given by

(t, r], Y, Z) h(X(s, r], Y, Z))ds. The upper value of this game

[0, T] x H---’ R, is defined by
(t, r]) infM,SUpzz (t, 7, a(Z), Z).

Theorem 4. (t, ) Vc (t, ?, y) for any y Ra and c > O.
Proof Suppose that rn is finer than 7n_ and the meth of zrn---* 0, as

n---* co. Then, putting Mn M,, we see that infaeM, SUpzezAt (t, 7, o(Z), Z)
is decreasing to the upper value 9, as n---* co, and
(10) infaM supzz(t, r], a(Z), Z) supzginfryC(t , Y, fl(Y))
holds [4].

On the other hand, if Y D C([0, T] -- Re), then
(11) sup,ginfrr Q(At(t, 7, Y, fl(Y)) <- v(t, , y)+ s(zc, y)
where s(7, y)--* 0, as the meth of r---. 0. Now apply Qc-1 to (11) to complete
the proof.

5. Suppose that cn converges to 0, as n--* co. Put V
Lemma 1. There exists a subsequence nj such that Vn converges uniformly

inany bounded set of [0, T] x H x Re. Moreover, its limit function V also

satisfies (4) and (7).
Lemma 2. The limit function V is independent of y.
Outline of proof We can employ the same arguments as in Appendix of

[1], with a slight modification. Let 5-- (, , 9)((0, T) x Hx Re
be a

strictly global maximum point of V-- q)- g. Then (4) and Lemma 1 imply
that any global maximum point $j of V q- g converges to weakly, as

On the other hand, the condition (iii) on test functions implies that
117yq)(z) [2 <_ ck, j-- 1,2"’, with a constant k = k(, g). So, we see that
17yq)($)]2 <_ 0 holds by the condition (i). Namely, V is a subsolution of the

equation
o.

Since V is a supersolution, V is a viscosity solution of (12).
Fix (’, ) (0, T) x H arbitrarily and put v* V(’, r, ). Let

C2(R#) be bounded below and assume that v -- has a strictly global
maximum at . Let us define q)s by

1q(t, r,y) =([t-- 1 + (B(r--r}), V-- r)) +(y).

Then any global maximum point of V-q)--g converges to (, r},), as
$

e---* 0. So 17,()[2 _< 0, because V is a subsolution of (12). Therefore v is

a viscosity solution of the equation 17v* [2 0. Now use Appendix of [1] to
complete the proof.
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(13)

Lemma 3. V is a unique viscosity solution of the min-max equation:

OV (A*OV 7) infy RdSUpuesz(OV fl(r] y U)) h(]) 0

with initial condition V(O, 7) O.
Proof. Since 117y le>- 0, Vj is a subsolution of the equation"

(i4) OW 1/2Ot (A*OW, 7) AW- supec(0W, fl(r/, y, u)) h(r/) 0.

Hence, by Lemma 1 we see that V is also a subsolution of (14). Since V is in-

*12dependent of y, we use a test function ((t, U) Y Y for any fixed y
Then we can easily see that V is a subsolution of (13).

On the other hand, the comparison theorem holds for (i 3). and its unique
viscosity solution coincides with the upper value of our differential game,

[3]. This fact implies "V -< ". Now Theorem 4 completes the proof.
Lemma 4. Put B,= { H;I[II-< n}, Sn= {y

w 1[, = sup {[ w (t, r/, y)]; (t, r/, y) [0, T] x Bn Sn} and define m
C([0, T] x U x Re) ---, [0, 1) by m(w) Z.L1 2-"
Then m provides the topology of uniform convergence on bounded sets.

Now we obtain the following main theorem.
Theorem 5. If c’-* O, Vc converges, uniformly in any bounded set of

[0, T] x H x Re, to the upper value of differential game, which is a unique

viscosity solution of the min-max equation (13).
Proof. From Lemmas 1, 2 and 3 we see that this theorem holds for ev-

ery sequence c1, ce, Now we can use Lemma 4 to prove that it holds for

--* 0o
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