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1. Introduetion and main results. Let p denote the nth prime number.
Let f be a polynomial with real coefficients, then it is known that the sequ-
ence {f(,Pn)}n=l is uniformly distributed modulo one (u.d. inod 1) if and only
if f is an irrational polynomial, which means that the polynomial f(x)
f(0) has one irrational coefficient at least. (cf. [3]). Furthermore, it is also
known that for any noninteger o (0, co), the sequence {P}n=l is u.d. rood
1 (see e.g. [1], [6]).

On the other hand, Goto and Kano [2] investigated the log-like functions

f and obtained sufficient conditions on the function f for which the sequence
{f(d)n)}n= is u.d. Inod 1. Unfortunately we could not underestand the proof
of main Theorem 2. In this paper we first modify Goto and Kano’s results
(see Theorems 1 and 2 below) and then give a new result (Theorem 3). The
proofs are given in Section 2. (Though our Theorem 1 is essentially the same
as Theorem 1 of [2], we give here a proof for completeness’ sake.)

Theorem 1. Let a > 0 and let f [a, co)--* (0, co) be a differentiable
function. Assume that xf’(x) co as x- co and that for sufficiently large
x, (log x)f’(x) is monotone in x. Further, assume that for some > 0,
f(x) o((log x)) as x--* co. Then the sequence {ocf(p)}n=0 is u.d. mod 1,
where no min{n’p,, a} and c is any nonzero real constant.

Theorem 2. Let a > 0 and letf" [a, co)-- (0, co) be a twice diffe-
rentiable function with f’ > 0. Assume that xf"(x) -- co as x--* co and
that for sufficiently large x, (log x)f"(x) is nonincreasing in x. Further,
assume that for some t > 0, f(x) o((log x) ) as x--* co. Then the sequ-
ence {ofQn)}n=no is u.d. mod 1, where no min {n’pn > a} and o is any
nonzero real constant.

Theorem 3. Let a > 0 and let f" [a, co)--* (0, co) be a twice diffe-
rentiable function with f’ > 0. Assume that x2f"(x) --* co as x--* co and
that for sufficiently large x, both (log x)2f"(x) and x(logx)2f"(x) are
nondecreasing in x. Further, assume that for some s
o ((log x) as x---* co. Then the sequence {cf(p.)}n=o is u.d. mod 1, where

no min{n’p, > a} and a is any nonzero real constant.
Note that Theorem 2 is essentially concerned with a convex function f,

while Theorem 3 is concerned with a concave function f. Applying Theorem
3 to the function f(x) (logx) we obtain that the sequence
{(log p)},= is u.d. mod 1 if e > 1.

2. The proofs. We first prove Theorem 3 and then prove Theorems i
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and 2.

Proof of Theorem 3. By Weyl criterion (see e.g. [3] p.4) it suffices to

prove that the sequence {f (Pn)}n=.o is u.d. mod 1.
Since xf"(x)--- co as x-- co, f"(x) < 0 for sufficiently large x.

Without loss of generality, we may assume that for all x >_ a, f"(x) < 0 and
that both the functions (logx)’f"(x) and x(logx)"f"(x) are nondecreasing

in a: [a, co). To prove the uniform distribution modulo one of the sequ-
ence {f(pn)}n=no, we shall prove that the discrepancy DN of

{f(P,)},=no approaches zero as N- co (see e.g. [3] pp. 88-89). Actually, we

shall prove that under the monotonicity conditions on the functions

(log x)2f"(x) and x(log x)2f"(x),
(1) D O {f (p) (log p)-}-} + {--pf"(pN)} --+ {-- Pv(1og Pg)f" (PN) }-1) as N--* co

which approaches zero as N--* co due to the conditions x2f"(x)- co

and f(x) o((log x) ) as x-- co.
It remains to prove (1). As usual, we shall apply the Erd6s-Turfin’s

estimation of the discrepancy Dg of {f(pn)}
g

for any positive integer m,
=0

there exists an absolute constant C such that

(2) DN <-- C(1-- "+" Em 1__ k e’’:<:"> I)
(see e.g. [3] p.l14). The crucial point is to estimate the exponential sum in

(2). Denote qo (Pno + a)/2 and denote the sum
27cihf(Pn)3 Srlo,N, h E e

n=

Then using integration by parts we can rewrite (3) as follows:
2n’ihf (pN 27ihf (qo)(4) S,o,g,h r (PN) e r (qo) e

ON 27 ihf (x)(L*(x) + R*(x))d e

where rr(x) is the number of primes not exceeding x, R*(x)
,bl

rr(x) L*(x) and L*(x) (log t) -1 dt for x _> q0. The last integral in
qo

(4) is equal to
L* (pn) e L* (q0) ea

(log x)-e"’:"(dx + 2rrih R*(x)f’(x)e
Hence the exponential sum defined in (3) can be rewritten as

2ihf(PN) * e2ihf(qo }(5) Sno,N,h {R * @N) e R (qo)

2 hf (X) dx

N fN 2zihf (X)+ (log x)-le2uihf(X)dx 2ih R*(x)f’(x) e dx
40qo

I + I,. + Ia (say).
We now estimate each Ii, i 1, 2, 3. It follows from the Prime Number

Theorem of Hadamard and de la Valle-Poussin (see e.g. [5] chapter 3) that
(6) R*(x) O(x(logx) -k) for each k > 1.
Applying (6) to the estimations of I and I yields
(7) I/ l O(PN(1Og PN) -(1+)) as N--* co
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and, since f’ > 0,
(8) s as g

On the other hand, using Lemma 10.3 [7] (p. 225)we obtain that
(9) [I] K max (4{(logx)[hf"(x)[}

qOXPN

= O ({ (log p) (-- hf" @N) ) }} - + {pN(Iogp)(-- hf"))} -)
as g

in which the last equality follows from the monotonicity condition on the
functions (log x)f"(x) and x(log x)f"(x).

Note that [Il 0(] I l) as N because f’ > 0. Putting (5), (7), (8)
and (9) into (2) yields that for any positive integer m,

)(IO)D C + Z (1I, + 161 + II1)

+Nf) (log)

Taking {N(log)+/f))} in (11) and using N /log as
N , we conclude that

which is the desired result (1). The proof is complete.

Proof of Theorem 1. Since zf’(x) as x,f’@) >0 for suf-
ficiently large x. Without loss of generality, we may assume that for all
a, f’(x) > 0 and that the function (log x)f’(x) is monotone in x [a, ).
As before, to prove that the discrepancy D of {f,)),, approaches zero
as N , we-estimate each
are the same as those in (7) and (8), respectively. As to the estimation of I,
we apply Lemma 4.a of [71 (. 61) and obtain that
(12) Il O(h-ax{1, [(log)7’)]-/) as N
because the function (log x)f’(x) is monotone in x. It follows from (7), (8),
(10) and (12) that

0(5 +
as N ,

Takin (N(lolD.)+’i.i.))) in (13) e obtain that

as N
hich approaches zero as N due to the conditions zi’(x) and
i(x) o((lo m)’) as m . The roof is complete.

Proof of Theorem 2. Since xf"(x) as x , f"(x) 0 for suf-
ciently large x. Without loss of generality, e may assume that for all
x , S"(x) > 0 and that the function (lolx)i"(x) is nonincreasin in
x a, ). As before, we want to prove that the discrepancy D of

)-=.o approaches zero as N . The estimations o I and I defined



272 Y.-H. Too [Vol. 68(A),

in (5) are the same as those in (7) and (8), respectively. As to the estimation
of I2, we apply Lemma 10.2 of [7] (p. 225) and obtain hat
(14) IIl K 4 max {(log x) (hf"(x))} -qoxPN

4 { (log p) (hf" (Pr))1/2}-,
in which the last equality, follows from the condition that function
(log x)f"(x) is nonincreasing in x. Therefore, it follows from (7), (8)-, (10)
and (14) that

+ Pf (Pv) (log p2v)
-+)

as N---* oo.

Taking rn {N(logpv)+/(pvf(pN))} 1/2 in (15) we obtain that

D O ({f (p) (log p)-} 1/2
which approaches zero as N---* oo due to the condition xZf"(x)---* oo and
f(x)= o((logX)) as N---* oo. The proof is complete.
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