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Department of Mathematics, National Taiwan Normal University
(Communicated by Shokichi IYANAGA, M. J. A, Nov. 12, 1992)

1. Introduction and main results. Let p, denote the nth prime number.
Let f be a polynomial with real coefficients, then it is known that the sequ-
ence {f(p,)},-, is uniformly distributed modulo one (u.d. mod 1) if and only
if f is an irrational polynomial, which means that the polynomial f(x) —
f(0) has one irrational coefficient at least. (cf. [3]). Furthermore, it is also
known that for any noninteger a € (0, ), the sequence {p,},_, is u.d. mod
1 (see e.g. [1], [6]).

On the other hand, Goto and Kano [2] investigated the log-like functions
f and obtained sufficient conditions on the function f for which the sequence
{f(P)}ry is u.d. mod 1. Unfortunately we could not underestand the proof
of main Theorem 2. In this paper we first modify Goto and Kano’s results
(see Theorems 1 and 2 below) and then give a new result (Theorem 3). The
proofs are given in Section 2. (Though our Theorem 1 is essentially the same
as Theorem 1 of [2], we give here a proof for completeness’ sake.)

Theorem 1. Let @ > 0 and let f : [a, ) — (0, ) be a differentiable
function. Assume that xf’(x) — © as £— ©© and that for sufficiently large
x, (log x) f'(x) is monotone in x. Further, assume that for some & > 0,
f(@) = 0((log x)°) as £— . Then the sequence {af (§,)};,-,, is u.d. mod 1,
where n, = mini{n : p, > a} and a is any nonzero real constant.

Theorem 2. Let @ > 0 and let f : [a, ) — (0, ) be a twice diffe-
rentiable function with f” > 0. Assume that xzf”(x) — 0 35 r— ° and
that for sufficiently large x, (log x)zf”(x) is nonincreasing in x. Further,
assume that for some € > 0, f(x) = o((log x)°) as x— . Then the sequ-
ence {af (p,)},-,, is ud. mod 1, where n, = min{n:p, > a} and a is any
nonzero real constant.

Theorem 3. Let @ > 0 and let f:[a, ) — (0, ) be a twice diffe-
rentiable function with f” > 0. Assume that xzf”(x) — — 00 35 x— °° and
that for sufficiently large x, both (log x)zf”(x) and x (log x)zf”(x) are
nondecreasing in . Further, assume that for some ¢ >0, f(x) =
0((log x)%) as £— ©. Then the sequence {af (p,)},.,, is u.d. mod 1, where
n, = min{n : p, > a} and « is any nonzero real constant.

Note that Theorem 2 is essentially concerned with a convex function f,
while Theorem 3 is concerned with a concave function f. Applying Theorem
3 to the function f(r) = (logx)® we obtain that the sequence
{(log p,)} ey is ud. mod 1 if & > 1.

2. The proofs. We first prove Theorem 3 and then prove Theorems 1
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and 2.

Proof of Theorem 3. By Weyl criterion (see e.g. [3] p.4) it suffices to
prove that the sequence {f(p,,)},,_,,o is u.d. mod 1.

Since x f”(x) — — 0 g5 x— %, f”(x) <0 for sufficiently large x.
Without loss of generality, we may assume that for allx = a, f”(x) < 0 and
that both the functions (log x)zf”(x) and x (log x)zf”(x) are nondecreasing
in £ € [a, o). To prove the uniform distribution modulo one of the sequ-
ence  {f(p,)},.n, we shall prove that the discrepancy Dy of
{f(p,,)}:=,,o approaches zero as N— o (see e.g. [3] pp. 88—89). Actually, we
shall prove that under the monotonicity conditions on the functions
(log 2)%f " (x) and x(log )7 (x),

(1) 0({f(PN) (loglm)_e}2 + {—PNf”(P )} 72

+ {— PN(IOgPN)f”(PN)} ) as N— o,
which approaches zero as N— oo due to the conditions xzf”(x) — — o0
and f(x) = o((log x)°) as x — .

It remains to prove (1). As usual, we shall apply the Erdés-Turan’s
estimation of the discrepancy D, of {f(p,,)}L,,o: for any positive integer m,
there exists an absolute constant C such that

2) py<c(L+ Z hl N T e

(see e.g. [3] p.114). The crucial pomt is to estlmate the exponential sum in
(2). Denote g, = (p,,o + a)/2 and denote the sum

N
2mihf (p,)
(3) Sno,N,h - Z e ",

n=nq
Then using integration by parts we can rewrite (3) as follows:
R — 2mihf (Ppr) 2mihf (qy)
(4) Spows = Ty eV — w(ge

_ pr (L*(x) + R*(x))d Znihf(x),

'

where m(x) is the number of primes not exceeding x, o , R*(x) =
(a,

w(xr) — L*(z) and L*(z) = f (logt)” L dt for x = qo The last integral in

(4) is equal to '
L* (Ow) e 2minf () _ % (40 2T @

1Y ;
_ f (log ) ¢ @ g + Znihf R*@)f (x)e™™ @ dz.
do

0
Hence the exponential sum defined in (3) can be rewritten as

(6) Synin = (R*(py) ™™ — R*( O)eZnihf(qo)}
PN o |
+ f (log )~ -1 2@ g 277:ihf R*(x)f,(x)eZnthf(z)dx

90 d0

=1, + I, + I, (say).

We now estimate each I;, 1 = 1, 2, 3. It follows from the Prime Number
Theorem of Hadamard and de la Vallée-Poussin (see e.g. [5] chapter 3) that
(6) R*(x) = O(x(logx)™") for each k > 1.

Applying (6) to the estimations of I; and I, yields
(7) | L[ = O(py(log py)™"") as N— oo
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and, since f’ > 0,
(8) | I, | = O (pwhf (by) (log py)™"*") as N— oo,
On the other hand, using Lemma 10.3 [7] (p. 225) we obtain that
9 LI < max @{logx) | hf"()[2™" + {xQogx)*| hf"(x) N7
W=zSpy
= 0 ({(og p) (— Bf " () B ™ + {pylog p)*(— hf " () ™)
as N— oo,
in which the last equality follows from the monotonicity condition on the
functions (log 2)’f” () and z (log x)°f”(x).
Note that | I, | = O(| I;]) as N— o because f’ > 0. Putting (5), (7), (8)
and (9) into (2) yields that for any positive integer m,
10 Dy < C(5 + £ FpA LI+ L1+ L))

h=n0
1

1) = 0(L + Flogpw (= £ o)D" + J{bylog p)*(— (e

+_}n\17 pnf (By) (log PN)—(HE)) as N— oo,

Taking m = {N (log pN)‘*s/(pr(pN))}% in (11) and using N ~ p,/log py as
N — oo, we conclude that . L
Dy = O({f (py) (log py) " }2 + {— py f" (6w} 2
+ {— py(log p)f "B} ™) as N— o,
which is the desired result (1). The proof is complete.

Proof of Theorem 1. Since xf’(x) — o as x— oo, f’(x) > 0 for suf-
ficiently large x. Without loss of generality, we may assume that for all x =
a, f’(x) > 0 and that the function (log x£)f’(x) is monotone in x € [a, o).
As before, to prove that the discrepancy Dy of {f(p,)},.,, approaches zero
as N— oo, we estimate each I; defined in (5). The estimations of I; and I,
are the same as those in (7) and (8), respectively. As to the estimation of I,
we apply Lemma 4.3 of [7] (p. 61) and obtain that
(12) | I,]| = O (h'maz{1, [(og py)f (px)1™"}) as N— oo,
because the function (log x)zf’(x) is monotone in x. It follows from (7), (8),
(10) and (12) that
(13) Dy = O(L + maz{3:, (s @17} + Feby £ 0) Gog £2)™***)

as N— oo, .
Taking m = {N (log py) /by f (p4))}7 in (13) we obtain that

D, = O( (7 () (og p)™ + maz{ 3, oy 101 7}) as N— o2,
which approaches zero as N— oo due to the conditions xf’(x) — o and
f(x) = o((log x)°) as x— . The proof is complete.

Proof of Theorem 2. Since Zf”(x) — % as x— %, f”(x) > 0 for suf-
ficiently large x. Without loss of generality, we may assume that for all
x=a, f’(x) > 0 and that the function (log x)zf”(x) is nonincreasing in
x € [a, ©). As before, we want to prove that the discrepancy D, of
{f(p,,)}ﬂ’_,,o approaches zero as N— o, The estimations of I, and I; defined
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in (5) are the same as those in (7) and (8), respectively. As to the estimation
of I,, we apply Lemma 10.2 of [7] (p. 225) and obtain that
(14) || <4 max {(ogx)hf"(x))2}!
W=<TPN .
= 4{(log py) (Wf " (px))2} ",
in which the last equality follows from the condition that function

(log x)f”(x) is nonincreasing in x. Therefore, it follows from (7), (8), (10)
and (14) that

15) Dy=0(Z + 0hr @ F+ 2 by £ (o) tog p) ™) as N— o0,

Taking m = (N (log py)"**/(by f )} in (15) we obtain that
Dy = O((f (by) (0g o) ™) + % F" (b)) %) as N— oo,

which approaches zero as N— o due to the condition z’f”(x) — o and
f (@) = 0((logx)®) as N— . The proof is complete.
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