12. Stochastic Flows of Automorphisms of G-structures of Degree r

By Hiroshi AKIYAMA

Department of Applied Mathematics, Faculty of Engineering, Shizuoka University

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1991)

1. Introduction. Let M be a σ -compact connected C^{∞} manifold of dimension n, and let $P^r(M)$ be the bundle of frames of r-th order contact over M with structure group $G^r(n)$ and natural projection π ([6], [7]). The purpose of this paper is to give a condition that a stochastic flow of diffeomorphisms generated by a stochastic differential equation on M be a stochastic flow of automorphisms of a G-structure of degree r (i.e. a G-subbundle of $P^r(M)$) for a closed subgroup G of $G^r(n)$ by using Itô's formula for fields of geometric objects ([1]). Our main result (Theorem 3.1) generalizes some results in [4], [9], [1] on stochastic flows of diffeomorphisms leaving tensor fields invariant.

We assume all non-probabilistic maps (and vector fields) in this paper are smooth. The tangent bundle over M is denoted by T(M), and the tangent space at $x \in M$ by $T_x(M)$. Throughout the paper, indices take the following values: α , $\beta=1, 2, \dots, k$; $\lambda=0, 1, \dots, k$.

2. Preliminaries. Let M and G be as above. The quotient space $P^r(M)/G$ is then a fiber bundle with standard fiber $G^r(n)/G$ associated with $P^r(M)$. There is a natural one-to-one correspondence between the sections $M \to P^r(M)/G$ and the G-structures of degree r on M ([8, pp. 57–58]). A transformation φ of M induces a transformation $\tilde{\varphi}$ of $P^r(M)$ by $\tilde{\varphi}(j_0^r(f)) = j_0^r(\varphi \circ f)$ for any $j_0^r(f) \in P^r(M)$, where $j_0^r(f)$ is the r-jet at the origin $0 \in \mathbb{R}^n$ given by a diffeomorphism f of an open neighborhood of $0 \in \mathbb{R}^n$ onto an open set of M with $\pi(j_0^r(f)) := f(0)$. Then $\tilde{\varphi}$ induces a transformation $\bar{\varphi}$ of $P^r(M)/G$ such that $\bar{\varphi} \circ \mu = \mu \circ \tilde{\varphi}$, where $\mu : P^r(M) \to P^r(M)/G$ is the projection. For a section $\sigma : M \to P^r(M)/G$, we define a section $\varphi^*\sigma : M \to P^r(M)/G$ by $\varphi^*\sigma = \bar{\varphi}^{-1} \circ \sigma \circ \varphi$.

Correspondingly, a vector field $X: x \mapsto X(x) \in T_x(M)$, $x \in M$, on M induces a vector field \tilde{X} on $P^r(M)$ and a vector field \overline{X} on $P^r(M)/G$ in a natural manner, since X generates a local one-parameter group of local transformations φ_t of M and φ_t induces naturally a local one-parameter group of local transformations $\tilde{\varphi}_t$ [resp. $\bar{\varphi}_t$] of $P^r(M)$ [resp. $P^r(M)/G$]. We set $\varphi_t^*\sigma = (\bar{\varphi}_t)^{-1} \circ \sigma \circ \varphi_t$. The vector field \tilde{X} [resp. \bar{X}] is called the natural lift of X to $P^r(M)$ [resp. $P^r(M)/G$]. We denote by $\hat{L}_{X\sigma}: M \to T(P^r(M)/G)$ the Lie derivative of σ with respect to X in the sense of Salvioli ([10]); it is defined by

$$egin{align} (\hat{L}_{X}\sigma)(x) :=& rac{d}{dt}(arphi_{t}^{*}\sigma)(x)|_{t=0} \ =& \sigma_{*}(X(x)) - \overline{X}(\sigma(x)) \in T_{\sigma(x)}(P^{r}(M)/G), \qquad x \in M, \end{split}$$

where σ_* stands for the differential of σ .

Lemma 2.1. Let G be a closed subgroup of $G^r(n)$. Let P be a G-structure of degree r on M, and let $\sigma: M \rightarrow P^r(M)/G$ be the corresponding section. Then:

- (1) For a transformation φ of M, the G-structure of degree r corresponding to $\varphi^{\sharp}\sigma$ is given by $\tilde{\varphi}^{-1}(P)$.
- (2) A transformation φ of M is an automorphism of P if and only if $\varphi^*\sigma = \sigma$.
- (3) A vector field X on M is an infinitesimal automorphism of P if and only if $\hat{L}_X \sigma = 0$.

Proof. (1) Since $\mu = (\varphi^*\sigma) \circ \pi$ holds if and only if $\mu \circ \tilde{\varphi} = \bar{\varphi} \circ \mu = \sigma \circ \varphi \circ \pi = \sigma \circ \pi \circ \tilde{\varphi}$, we have $\{p \in P^r(M) : \mu(p) = \varphi^*\sigma(\pi(p))\} = \tilde{\varphi}^{-1}(P)$. (2) and (3) follow from (1).

3. Main result. Let M and G be as before. Let X_0, X_1, \dots, X_k be vector fields on M. For each λ , let \tilde{X}_{λ} denote the natural lift of X_{λ} to $P^r(M)$. Consider the following stochastic differential equation in the Stratonovich form:

$$dp_{\iota} = \sum_{i} \tilde{X}_{\iota}(p_{\iota}) \circ dw_{\iota}^{\iota},$$

where $w_t^0 \equiv t$, and $w_t = (w_t^1, \dots, w_t^k)$ is a k-dimensional Wiener process canonically realized on the k-dimensional standard Wiener space (cf. [5], [9]). The solution with initial condition $p_s = p \in P^r(M)$ is denoted by $p_{s,t}(p) = (p_{s,t}(p,w))$, so that $p_{s,t}$ is a (stochastic) map $p_{s,t} : P^r(M) \rightarrow P^r(M)$.

Now we state our main result.

Theorem 3.1. For a closed subgroup G of $G^r(n)$, suppose a G-structure P of degree r is given on M. Let $\sigma \colon M \to P^r(M)/G$ be the section corresponding to P (cf. § 2). Assume (3.1) generates a stochastic flow of diffeomorphisms $p_{s,t}$ ($0 \le s \le t$) of $P^r(M)$, a.s. Then the stochastic flow of diffeomorphisms $\xi_{s,t}$ of M induced by $p_{s,t}$ is a stochastic flow of automorphisms of P, a.s. if and only if $\hat{L}_{x,\delta}\sigma = 0$ for each λ .

Before proving Theorem 3.1, we note that $\xi_{s,t}$ is also generated by the stochastic differential equation

$$(3.2) d\xi_t = \sum_i X_i(\xi_i) \circ dw_i^i.$$

Moreover, for almost all w, we have $p_{s,\iota}(j_0^r(f)) = j_0^r(\xi_{s,\iota} \circ f) = \tilde{\xi}_{s,\iota}(j_0^r(f))$ for any $j_0^r(f) \in P^r(M)$ and s, t with $0 \le s \le t$.

Proof of Theorem 3.1. As is easily seen, $p_{s,t}$ induces a stochastic flow of diffeomorphisms $\eta_{s,t}(=\bar{\xi}_{s,t})$ of $P^r(M)/G$ in a natural way; $\eta_{s,t}$ is also generated by the stochastic differential equation

$$d\eta_t = \sum_i \overline{X}_{\lambda}(\eta_t) \circ dw_t^{\lambda}$$

where each \overline{X}_{λ} is the natural lift of X_{λ} to $P^{r}(M)/G$. Consider the stochastic deformation $\xi_{s,t}^{*}\sigma = \eta_{s,t}^{-1} \circ \sigma \circ \xi_{s,t}$ of σ by $\xi_{s,t}^{-1}$. By Lemma 2.1, we have only to

prove that $\xi_{s,t}^*\sigma = \sigma$ (a.s.) holds if and only if $\hat{L}_{x,\sigma} = 0$ for each λ . To prove this, we shall use the following theorem, in which the following notation is used: If Y is either a tangent vector or a vector field on a manifold N, we denote by Y[H] the operation of Y on a function $H: N \rightarrow R$.

Theorem 3.2 (Itô's formula for $\xi_{s,t}^*\sigma$). For every function $F: P^r(M)/G \to R$, it holds that

$$\begin{split} F \circ (\xi_{s,t}^{\sharp}\sigma)(x) - F \circ \sigma(x) \\ &= \sum_{\lambda} \varPhi_{s,t}^{\lambda}(x,F) + \frac{1}{2} \sum_{\alpha} \int_{s}^{t} (X_{\alpha}(\xi_{s,u}(x))[((\hat{L}_{X_{\alpha}}\sigma)(\cdot))[F \circ \eta_{s,u}^{-1}]] \\ &- ((\hat{L}_{X_{\alpha}}\sigma) \circ \xi_{s,u}(x))[\overline{X}_{\alpha}[F \circ \eta_{s,u}^{-1}]]) \cdot du, \qquad (x \in M), \end{split}$$

where $\cdot dw_n^{\lambda}$ stands for the Itô stochastic differential, and

$$\Phi_{s,\iota}^{\scriptscriptstyle\lambda}(x,F):=\int_{s}^{\iota}(\eta_{s,u})_{*}^{\scriptscriptstyle-1}((\hat{L}_{\scriptscriptstyle X_{\scriptscriptstyle A}}\!\sigma)\circ \xi_{s,u}(x))[F]\cdot dw_{u}^{\scriptscriptstyle\lambda}.$$

Proof. Use [1, Theorem 3.1 (cf. § 5.2)].

Now that Theorem 3.2 is available, we can finish our proof of Theorem 3.1 easily: By Theorem 3.2, we see that $\xi_{s,t}^*\sigma=\sigma$ if $\hat{L}_{x,t}\sigma=0$ for each λ . Conversely, suppose $\xi_{s,t}^*\sigma=\sigma$. Then, by Theorem 3.2, the (local) martingale part of the continuous semimartingale $F\circ (\xi_{s,t}^*\sigma)(x)-F\circ\sigma(x)$ (=0) is given by $\sum_{\alpha}\Phi_{s,t}^{\alpha}(x,F)$, and the bounded variation part of $(\sum_{\beta}\Phi_{s,t}^{\beta}(x,F))\cdot\Phi_{s,t}^{\alpha}(x,F)$ is

(3.3)
$$\int_{\cdot}^{t} \{(\eta_{s,u})_{*}^{-1}((\hat{L}_{X_{a}}\sigma) \circ \xi_{s,u}(x))[F]\}^{2} \cdot du = 0.$$

The integrand of (3.3) being continuous in u, it holds that $(\eta_{s,u})^{-1}_*((\hat{L}_{X_a}\sigma) \circ \xi_{s,u}(x))[F]=0$ for any $u (\geq s)$, so that $(\hat{L}_{X_a}\sigma)(\cdot)[F]=0$ and thus $\hat{L}_{X_a}\sigma=0$ since F is arbitrary. Using Theorem 3.2 again, we have moreover $\hat{L}_{X_0}\sigma=0$. (The "only if" part of Theorem 3.1 can also be proved by using a backward Itô's formula in [3].)

For example, let P be a projective structure on M with $n \ge 2$, r=2 and $G=H^2(n)$ in the sense of [7] (cf. [6]). Then, with respect to P, $\xi_{s,t}$ generated by (3.2) is a stochastic flow of projective transformations of M if and only if each X_{λ} is an infinitesimal projective transformation (see also [1], [2]).

References

- [1] H. Akiyama: On Itô's formula for certain fields of geometric objects. J. Math. Soc. Japan, 39, 79-91 (1987).
- [2] —: Applications of nonstandard analysis to stochastic flows and heat kernels on manifolds. Geometry of Manifolds (ed. K. Shiohama). Academic Press, pp. 3-27 (1989).
- [3] —: Backward Itô's formula for sections of a fibered manifold. J. Math. Soc. Japan, 42, 327-340 (1990).
- [4] J.-M. Bismut: Mécanique Aléatoire. Lect. Notes in Math., 866, Springer (1981).
- [5] N. Ikeda and S. Watanabe: Stochastic Differential Equations and Diffusion Processes. 2nd ed., North-Holland/Kodansha (1989).

- [6] S. Kobayashi: Transformation Groups in Differential Geometry. Springer (1972).
- [7] S. Kobayashi and T. Nagano: On projective connections. J. Math. Mech., 13, 215-235 (1964).
- [8] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, I. Wiley (Interscience) (1963).
- [9] H. Kunita: Stochastic differential equations and stochastic flows of diffeomorphisms. École d'Été de Probab. de Saint Flour XII-1982, Lect. Notes in Math., 1097, Springer, pp. 143-303 (1984).
- [10] S. Salvioli: On the theory of geometric objects. J. Differential Geometry, 7, 257-278 (1972).