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1. Introduction. Nowadays Selberg zeta functions are defined for
semi-simple Lie groups G of real rank one and its discrete subgroups F,
since Selberg defined it first in [11] in 1956. Two ways are known for
studying Selberg zeta functions. One is by Selberg trace formulas and the
other is by Ruelle operators. By the former method, Selberg zeta func-
tions are finally expressed as the determinants of the Laplacians ([10], [2],
[7], [6]). By the latter method, they are expressed as the determinants of
1-(Ruelle operator) ([9], [3], [8]). Above all, the result of Mayer [8] is
remarkable in number theoretic viewpoint. He treats the Selberg zeta
function of F--PSL(2, Z), which is the unique example of non-compact
F\G for which the second method is applied.

In this paper we fulfill the second method in the case F--PGL(2, F[T]),
where F is a finite field of order q of odd characteristic. As is well be seen
in number theory, F has similar properties to those of PSL(2, Z). We
can apply the second method by following Mayer [8]. For the present F,
Akagawa [1] constructs Selberg trace formulas and proves that Selberg
zeta functions are rational with respect to q. This paper will give an-
other proof of Akagawa’s result. It is much shorter than the original
one, as is seen in the case of PSL(2, Z) by Mayer [8]. In the next section,
we will define continued fractions in function fields and deduce some
properties. In the third section, we will classify conjugacy classes of F
following Akagawa [1]. In the last section, we will define Ruelle opera-
tors on function spaces over function fields, and establish the relation to
Selberg zeta functions.

The author would like to express his profound gratitude to Professor
N. Kurokawa for encouraging in the whole process of producing this
paper. The author also would like to express his hearty thanks to. Pro-
fessor D. Fried for introducing the author to the beautiful theory of Ruelle
operators.

2. Continued fractions. Throughout this paper, we fix q a power
of an odd prime and F the finite field of order q. We denote R, K, and F to
be F[T], F(T), and F((T-)), which are analogues of Z, Q, and R. The field
F is the completion of K with respect to the place T-. Elements in F are
expressed as x-___ aT (a e F, k e Z, a =/=0). We will write deg for the
map from F to Z such that the element x corresponds to k. The map deg



256 S. KOYAMA [Vol. 67 (A),

is a homomorphism from F* onto Z. When deg x_O, Gauss symbol is
defined by [x]’=,_-0 a,T R. In the following we assume deg x O. We
define Gauss map T as Tx l/x-- [l/x]. Here 1/x is the inverse of x in
F. It is easy to see that deg (Tx) O. Letting x, be the polynomial [1/T*z],
we have an expansion

Let p, q e R be polynomials which express the finite part of the above as

q 1

1
n-

In what ollows non-Archimedean absolute values in F are normalized as
Ixi:--q(). The ollowiag lemma says that p/q approximates x well.

Lemma 1.

<
As a corollary of the above, we get the ollowing.
Proposition, Let x F be an algebraic element over K. The follow-

ing (a) and (b) are equivalent.
(a) x is quadratic over K.
(b) x has a cyclic expansion as continued fractions.
3, Coniugacy classes, The group F=PGL(2, R) acts on the alge-

braic closure of K by the linear ractional transformation. Let r=(: )
e F be a stabilizer of an algebraic element z. Then

a--dJ(a+d)--4a
Z

2c
where a= det e F*. We call z real or imaginary when it belongs to F or
not, respectively. We call hyperbolic when its fixed point z is real quad-
ratic. We caa see that being hyperbolic is equivalent to that J(tr )--4a
is real. For any p e R, is real if and only if the degree of p is even
aad the coefficient of the term of the highest degree belongs to F. So we
see that ay element e F whose trace has a positive degree is hyper-
bolic. As trace depends only on the conjugacy class of , we get a corre-
spondence between the set of hyperbolic conjugacy classes [] and the set o.f
real quadratic fields K(z) over K. Let Prim (F) be the set o all the primi-
tive hyperbolic conjugacy classes of F, where we call a class primitive
when it cannot be expressed by a non-trivial power of any other conjugacy
class. From the act that (n e Z) has common fixed points, we establish
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a correspondence between Prim (F) ad the set of quadratic fields;
Prim(F) [7]" >K(/(tr 7y--4det (7)).

Putting 2 to be the eigenvalue of 7 which has the larger non-archimedean
absolute value, we define the norm of 7 by N(7)’=121. It is equal to q
=q(rr). Selberg zeta unction of Ruelle type is defined by

r(s)’= ]-[ (1--N(7)-)-.
Prim (F)

Akagawa [1] constructs the Selberg trace formula and introduces the zeta
function from the hyperbolic terms in the trace formula, which is

Zr(s) "= [I (1-N(7)-s)=r(s)-1"
Prim (F)

Selberg zeta function Zr(s) absohtely converges inTheorem ([1]).
s>1 and

ZAs)--
q2_q

4. Ruelle operators. We define operators acting on the .space A(D)
of analytic unctions on D={z e F degz0} into D;

(1 )_" f(z)’. >
R

where s is an integer. We see that the above converges for sufficiently
large s. By the theorem of Goss [4, 2.1.2], values at large integers deter-
mine the function. By putting

and T(z)’--() "=
z+ +

we decompose it into f()=,,f(z), where ,f()=()f(T()).
Pot a while we will fix , and , , will be written as , . or
given e R (i=1, 2, g, ..), [, ..., ] will denote the eyelie continued
fraction whose eriod is

1
1

Lemma 2.
[]2tr (_f)=R-F I + In]-----"

Proof. By the method of Kamowitz [5], we deduce that the spec-
trum of _f consists only of eigenvalues, which are 2=[n](--[n]) (/=0, 1,
2, ...). Q.E.D.

By the standard method of computing the trace of iterated Ruelle
operators, the ollowing is deduced.

Lemma 3.
]tr (_n)= []__, [i, ..., in, i, ..., i_,

il,’..,inR-F 1-(-1) l-I [i, ..., in, i, ..., i_1]
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Proof. By the same method as that of Lemma 2, we can compute
that the eigenvalues of _,_,...., are given by-- [ [i ", in, il, ", i_1 ",]2s I ( [i, "’,in, i i_112) Q.E.D.

k=l k=l

We call a primitive fixed element of ,T if x is not fixed by T
any positive integer kn. The set of all the primitive fixed elements of T
will be denoted by Prim (Fix

Lemma 4. Le$ x--[i, ..., i] e Prim (Fix T) be a quadratic element
over K, which corresponds to e 1". Then

N(y)-- q2=,e.
Let X be an operator having only eigenvalues as its spectrum. We

write det(1-1X [) and trlXi for [](1-11) and ,1], respectively, when
they absolutely converge.

Theorem.

:r(s)= det (1-I+: I).
det (1-1.L’ )

Proof. Using the equality det(l-lXI)=exp-{:=: (trlX[)/m}, we
can compute the right hand side by substituting Lemma 3. It is related to
:r(s) by Lemma 4. Q.E.D.

Corollary 1.

r(s) q2S_q
q2_q

Proof. From Lemma 3, trll=__(d)(q-/(1-q-)), where
s(d) "=#{(i,, ..., i)e (R--F)i7__ deg (i3=d}. It is computed that

,(d) q(q-1)(d-- 1)
(d--n) (n--1)

and some technical calculations lead to the result. Q.E.D.
Corollary 2. The Selberg zeta function r(s) satisfies a functional

equation
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