34. Weinstein Conjecture and a Theory of Infinite Dimensional Cycles

By Hiroshi MORIMOTO
Department of Mathematics, Nagoya University
(Communicated by Kunihiko Kodaira, M. J. A., April 12, 1991)

Introduction. Let (M, ω) be a contact manifold of dimension 2n+1. Then there exists on M a vector field ξ , called a characteristic field (or Reeb field) such that

$$d\omega(\cdot,\xi)\equiv 0,$$

 $\omega(\xi)\equiv 1.$

If M is an imbedded star-shaped sphere in $\mathbb{R}^{2^{n+2}}$, and if f is a smooth function on $\mathbb{R}^{2^{n+2}}$ such that $M=f^{-1}(k)$ for some $k\in\mathbb{R}$ and df is nowhere zero on M, then ξ is a Hamiltonian vector field of f with respect to the canonical symplectic structure Ω on $\mathbb{R}^{2^{n+2}}$ (after a normalization). A. Weinstein [5] and P. Rabinowitz [4] showed there exists at least one closed orbit of ξ for any star-shaped sphere. In view of this result, the existence of closed orbits of ξ for any compact contact manifolds was conjectured by A. Weinstein.

For compact hypersurfaces of contact type in \mathbb{R}^{2n+2} , the conjecture was solved affirmatively by Viterbo [6]. His result was extended by Floer, Hoffer and Viterbo [2] for compact hypersurfaces of contact type in $\mathbb{C}^{l} \times P$, here (P, Ω) is a compact symplectic manifold, l > 0 and Ω is supposed to vanish on $\pi_{2}(P)$.

This problem has the following variational aspect. Closed orbits of ξ coincide with the critical points of the following variational problem:

$$L(c) = \int \omega(\dot{c}) ds$$
 $c \in C^1(S^1, M)$

A neck of solving the conjecture for a general case lies in a break-down of the so calld Palais-Smale condition. This leads us to the notion of critical points at infinity, which are defined to be the set of limit points of sequences c_i such that the action of c_i tends to zero. In this paper we discuss this failure of the Palais-Smale condition and identify these critical points at infinity, using a theory of infinite dimensional cycles.

We define in the next section a family of operators $P = \{P_c\}$ parametrized by a free loop space $C^1(S^1, M)$. We derive from this family of operators a number of infinite dimensional cycles in the space $C^1(S^1, M)$. A general theory of infinite dimensional cycles associated to operators was studied in [3], to which we refer for notations of cycles. Among these cycles, our interest lies in a solution cycle $\kappa^{1.1}(P)$.

We suppose that the Stiefel-Whitney classes $w_{2n}(M)$, $w_{2n-1}(M)$ are equal to zero. Let v be a non-zero vector field in $ker(\omega)$. Then we have:

Theorem. (i) The critical points at infinity on $\kappa^{1.1}(P)$ are piecewise smooth curves, broken at points $\{p_i\}$, such that (1) each segment from p_i to p_{i+1} is an orbit of ξ or v. (2) p_i is conjugate to p_{i+1} .

(ii) The cohomology class corresponding to the cycle $\kappa^{1,1}(P)$ is zero in $H^*(C^1(S^1, M))$.

For n=1 (i.e., for 3-dimensional contact manifolds) the first part of the above theorem was proven by A. Bahri [1]. See also [1] for the definition of conjugacy and the notion of critical points at infinity.

Infinite dimensional cycles and a family of operators. In this section we define a family of operators, from which infinite dimensional cycles are derived. Since ξ is a non-zero vector field, we have a decomposition $TM = ker(\omega) \oplus \langle \xi \rangle$, and we let v be a non-zero section of $ker(\omega)$. Then we have a decomposition $ker(\omega) = \langle v \rangle \oplus W \oplus L$ for some W and some line bundle L from the assumption. For each curve $c \in C^1(S^1, M)$, we denote by $c^*(TM)$ the pullback of TM. We now define a family of operators $P = \{P_c\}$ parametrized by $C^1(S^1, M)$ as follows. For $c \in C^1(S^1, M)$, we set

$$P_{c}: \Gamma(S^{1}, c^{*}(TM)/\langle v \rangle)) \rightarrow \Gamma(S^{1}, \operatorname{Hom}(\otimes^{2n-2}W, \mathbf{R}) \oplus \mathbf{R}),$$

$$P_{c}(v) = \left((d\omega)^{n}(y, v, *, \cdots, *), \frac{d}{ds}\omega(y) \right),$$

$$y \in \Gamma(S^{1}, c^{*}TM/\langle v \rangle).$$

Although the above family of operators is not a Fredholm morphism, it is easy to get a Fredholm morphism from P by selecting appropriate subspaces of Γ . We denote again this family by P. We then have a solution cycle $\kappa^{1,1}(P)$ on the parameter space $C^1(S^1,M)$ from [3]. Actually we have cycles $\kappa^{1,1}_{p,q}(P)$, but the integers p,q depend only on the choice of subspaces in Γ for defining a Fredholm morphism. Therefore we denoted simply $\kappa^{1,1}(P)$ neglecting p,q.

References

- [1] A. Bahri: The theory of critical points at infinity (preprint).
- [2] A. Floer, H. Hofer and C. Viterbo: Weinstein conjecture in $P \times C^1$. MSRI, 00824–89 (1989).
- [3] H. Morimoto: A theory of infinite dimensional cycles for Dirac operators. Proc. Japan Acad., 65A, 67-69 (1989).
- [4] P. H. Rabinowitz: Periodic solutions of Hamiltonian systems. Comm. Pure Math., 31, 157-184 (1978).
- [5] A. Weinstein: On the hypotheses of Rabinowitz periodic orbit theorems. J. Diff. Equ., 33, 353-358 (1979).
- [6] C. Viterbo: A proof of Weinstein's conjecture in R²ⁿ. Annals de l'Institut Henri Poincaré, Analyse non-linéare, 4, 337-356 (1987).