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1. Introduction. Throughout this paper X denotes a uniformly con-
vex real Banach space and C is a closed convex subset of X. The value of
x* e X* at x e X will be denoted by (x, x*). The duality mapping J (multi-
valued) from X into X* will be defined by J(x)--{x*e X*’(x,

Ix*l } for x e X. We say that X is (F) if the norm of X is Fr6chet differ-
entiable, i.e., for each x e X with x:/:O, limot-(lx+tyll-IIx I) exists uni-
ormly in y e B, where B={z e X" llz _<=r} or r)0. A mapping T" CC
is sid to be asymptotically nonexpansive i or each n= 1, ’2,
(1.1) Tnx Ty (1+ a)] x-- y or any x, y e C,
where lima=0. In particular, i a-0 or all nl, T is said to be
nonexpansive. The set of fixed points o T will be denoted by F(T).

Throughout the rest of this paper let T" CC be an asymptotically
nonexpansive mapping satisfying (1.1).
A sequence {Xn}0 in C is called an almost-orbit o T

lim [sup x+--TXn
m0

A sequence {Zn} in X is said to be weakly almost convergent to z e X if

w--lim 1 n-

Z+Z
n k=0

uniformly in i 0.

The purpose of this paper is to prove the ollowing (nonlinear) mean
ergodic theorem which is an extension of [3, Theorem 1] and [1, Corollary
2.1].

Theorem. Let {x}0 be an almost-orbit of T. If X is (F) and C is
bounded, then (x} is weakly almost convergent to the unique point of F(T)
clco({x}), where w({x})denotes the set of weak subsequential limits

of {Xn}, and clco E is the closed convex hull of E.
2. Proof of Theorem. Throughout this section, we assume C is

bounded. By Bruck’s inequality [2, Theorem 2.1], we get
Lemma 1. There exists a srictly increasing, continuous, convex func-

tion " [0, )[0, ) with y(O)-O such that
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for any k, nl, any 1, ", =0 with .=1=1 and any xl, ..., Xn Co
Hereafter, let Y be as in Lemma 1. Now, we can easily prove
Lemma 2. Suppose that {x}=0 and {Y}0 are almost-orbits of T.

Then { Xn--Yn } converges as n.
We now put D=diameter C and M=supz (l+a).
Lemma . Suppose that {x})} (p-1,2, ...) are almost-orbits of T.

Then for any 0 and nl there exis NI and in(e)l, where N is in-
dependent of n, such that [T(=2,x))--=2Tx)[e for any kN,
any ii(), and any , ., 0 with 1.

Proof. For any e 0 choose 0 so that y-()e/M. Then there ex-
ists NI such that /4D i kN. Since {x})-x) ]} converges as

by Lemma 2, or each p, ql there exists i0(e, p, q)l such that

x) x)-+() +() /4 if i>= i0(z, p, q) and k>= 0. Moreover, there are
i(e, p)l such that a)/4 or all ii(z, p), where a)--supo[[X2
Tx) ]. Put i(e)=max{i0(e, P, q), i(z, p)" lgp, qgn} or nl. I ii(e)
and kN, then

x)_x)- Tx)_Tx)

for lp, qn and by Lemma 1, IT(:12x{))--=1Txll or y,, ..., ,o with $:,=. Q.E.D.
For ny0and 1, we put F,()={x C" IITx--xll}. Since C

is bounded, F(T) . (For example, see [4, Proposition 2.3].)
Lemma 4. Sppose that {x}a0 i8 an almos$-orbi$ of T. Then for any

0 there exists N,I such that for each kN,, there is N(=N(e))I
n- F,(T) for all n>N and all lOsatisfying (1/n) {=0 x+ e

Proof. Let e0 be arbitrarily given and be the inverse unction o
tMT-’(3t)+t. Put -min{a(/3), (/3M’D)} and M’=M+I. Choose V)0
and N,,I so that T-()<(/2M) and z(/3)/D if kN,,. Further-
more, by Lemma 3, there exists N,,I such that or any pl there is

i() 1 satisfying

1 -T(2.1) T 1 x++ --.= x++ 8
or any kN,, any ii(e), and any l0. Put N=max(N,, N,) and let
kN be fixed. By Lemma 1 and the choice o , we get

T(2.’2) clcoF(T)CF/( )
Next, choose pl so that (Dk/p)(a/2) and let p be fixed. Since {x}=0 is
an almost-orbit of T, there exists NI such that i mN, sup=0l]x+--- or i>0 I i)i(e)+N, by (2.1)Tx l(a/8) Set w (1/p)=0x+

_1 Tx++_T 1 x+++ =o 4
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or all l>=0. Choose N(k)>=i(D+N+I such that (D(i(D/N)/n)(/4) for
all n=N(k). I n>=N(k), then

(2.3) 1 n-1

+l(iP-1 ) Tk nk (ip()+N)n 2

or all l0, where i=i(e). Choose N(k)l so that ((p--1)D/2n)(e/3M’)
or all nN(k). PutN=max (N(k), N(k)) and letnN be fixed and l0.
Set A(k,n, 1)=(ie Z" Ogign-1 and ]]w+--Tw+]]} and B(,n, 1)=
0, 1, ..., n--1}A(k, n, 1). By (2.3), A(k, n, 1)gn where denotes cardi-
nality. Let f F(T). Then,

n :o n =o up

np
The first term on the right side o the above equality is contained in
clcoF(T), and the rest term in B/,. By (2 2), we get (l/n)=0 x+ e
F(T) or all l0. Q.E.D.

Lemma 5. Let {Xn} in C be such that w--lim x=x. Suppose that

for any 0 there exists N(e)l such that for kN(e) there is NO satis-
fying [[Txn-X[l for all nN. Then x e F(T).

Proof. We shall show that lim Tx--x]]=O. For any 0 choose
0 so that y-() (/4M) and take N() 1 such that a (/3D) or all

kN(z). Put ’=min(/3, e/4). By the assumption, there exists N(e)l
such that or each kN(e) there is N0 satisfying ]]Tx--x]] or alln
N. Put N(e)=max (N(0, N(0) and let kN(e) be arbitrarily fixed. Since
xeclco{x]n>N},= there exists a sequence
such that limn. 2()x,()=x. Therefore there is N(k)l such that
l]2)x,()--xll(z/4M) for all nN(k) and hence if nN(k), ][Tx
T( )x,,))[](s/4) On the other hand, by Lemma 1 and the choice
of and k, we get l[T(5(j)x,()--2()Tx,()[[(e/4)for all nl.
Consequently,

]]Tx--x]Ig Tx--T ()x,() + T
k=l k=l

i=l i=1

where nN(k). This shows that ]Tx--x or kN(). Q.E.D.
Lemma 6. Suppose that X is (F) and [Xn} is an almost-orbit of T.

Then, the following hold"
( i ) {(x, J(f--g))} converges for every f, g e F(T).
(ii) F(T) clco o({x)) is at most a singleton.
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Proof. Let e (0, 1) and f, g e F(T). By Lemma 3, or any e0 there
existN >=1 and i(e)1 such that i k>=N and n>=i.(D, then ]1T(Xn/ (1-)f)
--2Tx--(1--)fll.. Since II,x+(1--,)f--g]lllx/,--T’xn I+lIT(x

+(l/a)[12x,,/(1--2)f --gll or m=N and n_i(O, {12x+(1-)f-gl[} con-
verges. The rest o proof is the same as [5, Lemma 3.6]. Q.E.D.

Proof of Theorem. Let p(n) be any sequence ot nonnegative integers,
n-1 It suffices to show that (s} converges weaklyand put Sn (I/n)

to a point of F(T) clcow.({x}). First, note w({S})=/= because {s} is
bounded. Next, Lemmas 4 and 5 imply (o({s})F(T). Moreover w({s})

0 clco {x" ki}= clco ww({xn}). Thus we have =/= ww({sn}) F(T)
clco w({x}). Combining this with Lemma 6-(ii), we obtain that w((s})

is a singleton and is equal to F(T) clco w((xn}). Q.E.D.
Remarks. 1) The assumption "C is bounded" in Theorem may be re-

placed by "F(T) =/= ".
2) Similarly we can prove the mean ergodic theorem or an asymp-

totically nonexpansive semigroup.
In the same way as the proo o [1, Theorem 3.1], by virtue of Theo-

rem, we get the ollowing which improves upon [6, Corollary 3].
Corollary. Suppose that X is (F) and {Xn} is an almost-orbit of T.

{x} is weakly convergent to a fixed point of T if and only if F(T)= and
w--lim (x--x+,)=0.
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