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1. Introduction. Throughout this paper X denotes a uniformly con-
vex real Banach space and C is a closed convex subset of X. The value of
z* e X* at « ¢ X will be denoted by (x, *). The duality mapping J (multi-
valued) from X into X* will be defined by J(x)={x*ec X*: (x, 2*)=| x|}
=|lz*|*} for z € X. We say that X is (&) if the norm of X is Fréchet differ-
entiable, i.e., for each xe X with ©=0, lim, ¢t '(|z+ty|—| =|) exists uni-
formly in y € B,, where B,={ze X: ||z||<r} for r>0. A mapping T: C—~C
is said to be asymptotically nonexpansive if for each n=1,2, - ..

1.1 1T e —T y|=A+a)|lz—yl for any =, y € C,
where lim,__ «,=0. In particular, if «,=0 for all =1, T is said to be
nonexpansive. The set of fixed points of T' will be denoted by F(T).

Throughout the rest of this paper let T: C—C be an asymptotically
nonexpansive mapping satisfying (1.1).

A sequence {#,},s, in C is called an almost-orbit of T if
lim [sup |2y, m—T™2,|1=0.

n—oo  m=0

A sequence {z,} in X is said to be weakly almost convergent to z e X if
w—lim 1 721 Zp i =R
R Y, k=0
uniformly in ¢>0.

The purpose of this paper is to prove the following (nonlinear) mean
ergodic theorem which is an extension of [3, Theorem 1] and [1, Corollary
2.1].

Theorem. Let {x,},, be an almost-orbit of T. If X is (F) and C is
bounded, then {x,} is weakly almost convergent to the unique point of F(T)
Neleo w,({x,}), where v, ({z,}) denotes the set of weak subsequential limits
of {x,}, and clco E is the closed convex hull of E.

2. Proof of Theorem. Throughout this section, we assume C is
bounded. By Bruck’s inequality [2, Theorem 2.1], we get

Lemma 1. There exists a strictly increasing, continuous, convex func-
tion 7: [0, 0c0)—[0, o0) with 7(0)=0 such that

I T"(f Mci) — f‘_, 2.1,
i=1 i=1

SA4a)r? < max [||xi_gcj||_
1=i,j=n

1
14«

uTkxi—T'“xju])
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for any k, n=1, any A, - -+, 2,20 with > 7., ;=1 and any x,, - - -, x, € C.

Hereafter, let 7 be as in Lemma 1. Now, we can easily prove

Lemma 2. Suppose that {x,}.», and {y,}.s0 are almost-orbits of T.
Then {||x,—¥.|} converges as n—oo.

We now put D=diameter C and M =sup,., 1+a,).

Lemma 3. Suppose that {x"},., (p=1,2, - --) are almost-orbits of T.
Then for any >0 and n=1 there exist N.=1 and 1,(e)=1, where N, is in-
dependent of n, such that |T*(C 2, 2,2P)— > 2, T %P || <e for any k=N,
any 1=1,(e), and any 2, - -+, 2,20 with 37, 2,=1.

Proof. For any ¢>0 choose §>0 so that 7-'(6)<¢e/M. Then there ex-
ists N.>1 such that «,<6/4D if k=N.. Since {|z{” —2x(?|},., converges as
j—co by Lemma 2, for each p, ¢=1 there exists i,(c, p, 9)=1 such that
([P — @ || — || 8, — 22, [|<<5/4 if 1=14(e, P, @) and k=0. Moreover, there are
(e, p)=1 such that a®<5/4 for all i=17(c, p), Where a® =sup,,,||z®&;—
Tiz®|. Put i,(e)=max {ie, p, @), (e, »): 1<p, q<n} for n=1. If i=1,(c)
and k=N, then

|2 — {0 |- L T~ T2

(297
Sl —ai (| — |2 — @]+ 0 + af? + o || 2P — 2{? || <5
for 1<p, ¢<n and by Lemma 1, ||T*(C 7., 2,22)— > 7, 2,T*x®||<e for any
Ay + 0y A, =0 with 37, 2,=1. Q.E.D.

For any e>0and k=1, we put F.(T*)={xe C:||T*z—x|<Le}. Since C
is bounded, F(T)+ . (For example, see [4, Proposition 2.3].)

Lemma 4. Suppose that {x}:s, is an almost-orbit of T. Then for any
e>0 there exists N.=1 such that for each k=N,, there is N(=N,(e))=1
satisfying (1/n) > =i, € F.(T*) for all n=N, and all 1=0.

Proof. Let ¢>0 be arbitrarily given and ¢ be the inverse function of
t—>M7-'(3t)+t. Put s=min{a(e/3),(c/3M'D)} and M'=M+1. Choose >0
and N, .>1 so that r-'(p) <(*/2M) and «,<o(e/3)/D if k=N,,.. Further-
more, by Lemma 3, there exists N, .>1 such that for any p=1 there is
i,(e) =1 satisfying

1 2 12!
@.1) [ CIEERS E S
p =0 P =0
for any k=N, ., any 1>1,(c), and any [=0. Put N,=max(N, ., N, ) and let
k=N, be fixed. By Lemma 1 and the choice of 5, we get
(2.2) cleco F(T*)CF, (T%).
Next, choose p>1 so that (Dk/p)<(6*/2) and let p be fixed. Since {x.},s, is
an almost-orbit of T, there exists N>1 such that if m=N, sup,.o||®n.,—
Tz, |<(*/8). Set w,=Q1/p) >z, ,; for i=0. If i=i(e)+N, by (2.1),

1 2=
”wnk”"‘TkaL”éHZ' }:40 (xi+j+k+l_Tkxi+j+l)
e

52
<=
8

p-1

p—1 )
+ H‘]‘-‘ Z Tkxi+j+l_Tk<"1" Z xi+j+l>”<§_
=0 P i=0 4
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for all 1=0. Choose N,(k)=i,(c)+N-+1 such that (D(i,(e)+N)/n)<(5*/4) for
all n=N,(k). If n=>=N,(k), then

1 n—-1 1 n—-1
23 = Z Wi — T, | = — Z 101 —Wisrsdll
n i=o n i=o0

ip+N—1 n-1 ; 2
+l<p2 + 2. )Hwnm—T"wmllé Dk | GOTND | 3 5
n i=0 i=ip+N p n 4

for all 1>0, where i,=1,(e). Choose N,(k)=1 so that (p—1)D/2n)<(¢/3M")
for all >N, (k). Put N,=max (N,(k), N,(k)) and let n=N, be fixed and =>0.
Set A(k,n,D)={ieZ: 0<i<n—1 and |w,,—T*w,,,||=d} and B(k,n,D)=
{0,1, - - -, n—11\A(k,n, D). By (2.3), # A(k, n, )<nd where # denotes cardi-
nality. Let fe F(T). Then,

n-1 n-1 1 22! .
Lipr=— Z Wit — 2 P—D @1 —Tiyyinv)
0 np =1

n n i=0

.

=[%(ﬁA(k,n,l))-f+l > wm]+[—1— 2. (wm—f)]

N i€B(k,n,l) N i€Ak,n,l)
1 23 .
+“‘* Z (p—"/'f)(xi-el—l’—xiq-“n—l)'
np i=1

The first term on the right side of the above equality is contained in
cleco Fy(T*), and the rest term in B,,,;,.. By (2.2), we get (1/n) > 752, €
F (T") for all 1>0. Q.E.D.

Lemma 5. Let {z,} in C be such that w—lim, .. x,=x. Suppose that
for any >0 there exists N(e)=1 such that for k=N(e) there is N, >0 satis-
fying | T*%, —x,||<e for all n=N,. Thenxze F(T).

Proof. We shall show that lim,_, ||[T*x—«||=0. For any ¢>0 choose
>0 so that 77'(6)<(¢/4M) and take N,(e)=1 such that «,<(5/3D) for all
E=N,). Putd=min(5/3,¢/4). By the assumption, there exists N(e)=1
such that for each k> N(¢) there is N, >0 satisfying || T*x, — 2, || <6’ for all n >
N,.. Put N,(&)=max (N,(c), N(e)) and let k=N,(¢) be arbitrarily fixed. Since
zecleo{x,|n=N,}, there exists a sequence {3, 2z, »}Cco{x,|n=N,}
such that lim,_. > », 2Pz, ,,=«. Therefore there is Ny(k)=1 such that
120, A%, o —2 || <(e/4M) for all n=N,(k) and hence if n=N,(k), | T x—
Ty 2892, )| <(e/4). On the other hand, by Lemma 1 and the choice

of 6 and k, we get [T, 20, ) — 2 okny 29T %, | <(e/4) for all n=1.
In ln in
TkW_Tk(; w)xwm)) Tk(Z_I; Zf,i)xvrn(z)) —iZJ AT %y,

Consequently,
n i
+ Z; AT @iy — Ly 0)) ’+ Z_i Zﬁf)xw(i)—‘xi <e

where n>N,(k). This shows that || T"x— x| <e for k=Ny(e). Q.E.D.
Lemma 6. Suppose thot X is (F) and {x,} is an almost-orbit of T.
Then, the following hold:
(1) {@n, J(f —gN} converges for every f, g € F(T).
(i) F(T)Necleo w,({z,)}) is at most a singleton.

IT* s —2||<

+
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Proof. Let 2€(0,1) and f, ge F(T). By Lemma 3, for any ¢>0 there
exist N, >1and i,(¢) =1 such that if k>N, and n=1,(¢), then | T*(Az, + 1A — ) f)
—AT*x, — (1= f[|<e. Since |22, ,n+A—=Df—9glZ Ay, n—T™x, ||+ || T2,
F A=) = 2T, — A= f I+ A+ a) 42, + A =D f —gIS 2] %y T, |+
+A+ea) A%, +A =D f—gl| for m=N, and n=1,(e), {| x,+1—2)f—g|]} con-
verges. The rest of proof is the same as [5, Lemma 3.6]. Q.E.D.

Proof of Theorem. Let p(n) be any sequence of nonnegative integers,
and put s,=@1/n) > 72 %4,y 1t suffices to show that {s,} converges weakly
to a point of F(T)Ncleow,({x,}). First, note w,({s.})# & because {s,} is
bounded. Next, Lemmas 4 and 5 imply o,({s,) CF(T). Moreover o,({s,})
cCNgycleo{z,: k=i}=clco w,({x,}). Thus we have ¢+*o0,{s,})CF(T)
Neleo w,({x,}). Combining this with Lemma 6-(ii), we obtain that v,({s.})
is a singleton and is equal to F'(T)N clco w,({x,}). Q.E.D.

Remarks. 1) The assumption “C is bounded” in Theorem may be re-
placed by “F(T)=+@”.

2) Similarly we can prove the mean ergodic theorem for an asymp-
totically nonexpansive semigroup.

In the same way as the proof of [1, Theorem 3.1], by virtue of Theo-
rem, we get the following which improves upon [6, Corollary 3].

Corollary. Suppose that X is (F) and {x,} is an almost-orbit of T.
{x,} is weakly convergent to a fixed point of T if and only if F(T)+ <& and
w—lim,_, (x,—2,,)=0.
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