58. A Mathematical Theory of Randomized Computation. III

By Shinichi YAMADA Waseda University and Nihon Unisys, Ltd. (Communicated by Shokichi IYANAGA, M.J.A., June 14, 1988)

Based on the results of earlier notes [5], we shall show that the category of randomized domains forms a cartesian closed monoid, which yields c.c.m. reduction calculi equivalent to type-free λ -calculi [1]. Then we shall axiomatize randomized domains, and show that our randomized domain theory is a natural probabilistic extension of Scott's theory. We also construct the reflexive graph model \mathcal{F}_{ω} similar to Scott's \mathcal{P}_{ω} [3].

11. The universal randomized domain \mathcal{R}_{∞} . A reflexive object \mathcal{R}_{∞} in the c.c.c. *CBL* is constructed in quite the same way with the construction of D_{∞} in Scott's theory [2]: Let $\mathcal{R}_0 := \mathcal{R}$ be any nontrivial domain in *CBL* and $\mathcal{R}_{n+1} := [\mathcal{R}_n \to \mathcal{R}_n]$ ($\forall n \ge 0$). Define $\varphi_n : \mathcal{R}_n \to \mathcal{R}_{n+1}$ and $\psi_n : \mathcal{R}_{n+1} \to \mathcal{R}_n$ by $\varphi_0(x) := \lambda y \in \mathcal{R}_0 \cdot x$ ($\forall x \in \mathcal{R}_0$), $\psi_0(y) := y(0)$ ($\forall y \in \mathcal{R}_1$), $\varphi_{n+1}(x) := \varphi_n \circ x \circ \psi_n$ ($\forall x \in \mathcal{R}_{n+1}$), and $\psi_{n+1}(y) := \psi_n \circ y \circ \varphi_n$ ($\forall y \in \mathcal{R}_{n+2}$), for $\forall n \ge 0$.

Then $\langle \mathcal{R}_n, \psi_n \rangle_{n \in N}$ is a projective system of the domains in *CBL*.

Let x_n denote the *n*-th coordinate of $x = (x_n)_{n=0}^{\infty}$ of the product $\prod_{n=0}^{\infty} \mathcal{R}_n$. Define the projective limit \mathcal{R}_{∞} by $\mathcal{R}_{\infty} := \underline{\lim} \langle \mathcal{R}_n, \psi_n \rangle = \{x \in \prod_{n=0}^{\infty} \mathcal{R}_n | \forall n \in N, \psi_{n+1}(x_{n+1}) = x_n\}$. Then $\mathcal{R}_{\infty} \in CBL$ by (15)–(16). Define evaluation \cdot in \mathcal{R}_{∞} by $x \cdot y := \sup_n x_{n+1}(y_n)$. Then the evaluation \cdot on \mathcal{R}_{∞} is positive order continuous. And we have:

(25) (i) (Extensionality) (a) $x \le y \to \forall z \in \mathcal{R}_{\infty}, x \cdot z \le y \cdot z$. (b) $x = y \to \forall z \in \mathcal{R}_{\infty}, x \cdot z = y \cdot z$. (ii) (Comprehension) Define for $f \in [\mathcal{R}_{\infty} \to \mathcal{R}_{\infty}], \Box f := \sup_{n} \{\lambda y \in \mathcal{R}_{n} \cdot (f(y))_{n}\}$. Then for $\forall y \in \mathcal{R}_{\infty}, f(y) = \Box f \cdot y$. (iii) (Reflexivity) $\mathcal{R}_{\infty} = [\mathcal{R}_{\infty} \to \mathcal{R}_{\infty}]$ up to order isomorphism (and homeomorphism in the norm topology).

Now that we have constructed a reflexive domain \mathcal{R}_{∞} , the constructions of universal domains are straightforward: In fact, let X be the two point space of Boolean values and $\mathcal{R}_0 := \mathcal{H}(\ell^1(X))$ and construct \mathcal{R}_{∞} with this \mathcal{R}_0 . Then we can define positive order continuous pairing function and associated selector functions. So $\mathcal{R}_{\infty} \times \mathcal{R}_{\infty}$ is a retract of \mathcal{R}_{∞} with these functions. Hence \mathcal{R}_{∞} is a *universal* domain of *CBL* and *CBL* forms a *cartesian closed monoid*.

The notion of band in our theory exactly corresponds to the notion of retract in Scott's theory. We recall the definitions:

(25) Let V be a BL. (i) A set $A \subset V$ is solid if $x \in A$, $y \in V$ and $|y| \le |x| \Rightarrow y \in A$. (ii) An *ideal* of V is a solid vector subspace of V. (iii) An ideal B of V is a band of V if for \forall non-empty $S \subset B$ possessing a supre-

mum sup S, sup $S \in B$. (iv) A band B of V is a projection band if V is the direct sum of B and B^{\perp} , where $B^{\perp} := \{x \in V \mid |x| \land |y| = 0 \text{ for } \forall y \in B\}$. The projection $P: V \rightarrow B$ is called a *band projection*.

Then a band B of a KB-space V is a solid subspace which is a KB-space with the relative order and norm topologies and conversely. The band projection $P: V \rightarrow B$ is a retraction of V onto B in both order and norm topologies of V. Also $P: \mathcal{H}(V) \rightarrow \mathcal{H}(B)$. So every randomized domain can be obtained by some band projection from the *vniversal* domain \mathcal{R}_{∞} .

12. The axiom systems for randomized domains. We present some axiom systems of randomized domains (cf. [4]):

Axiom system A. (Algebraic system)

Axiom A1=Axiom 1 and Axiom A2=Axiom 2 in $\S 2$.

Axiom A3. A randomized domain is the positive unit hemisphere $\mathcal{H}(V)$ of an algebraic KB-space V.

Axiom A4. operators between randomized domains are positive.

Axiom system E. (Effective system)

Axiom E1 = Axiom 1 and Axiom E2 = Axiom 2.

Axiom E3. A randomized domain is the positive unit hemisphere $\mathcal{H}(V)$ of a KB-space V.

Axiom E4. Operators between randomized domains are positive.

Axiom E5. A randomized domain has an effectively given countable basis for the order topology.

Axiom system S. (Separable system)

Axiom S1 = Axiom 1 and Axiom S2 = Axiom 2.

Axiom S3. A randomized domain is the positive unit hemisphere $\mathcal{H}(V)$ of a norm separable σ -order complete KB-space V.

Axiom S4. Operators between randomized domains are positive.

Axiom S5. A randomized domain has an effectively given countable basis for the order topology.

13. Embedding of cpo's and randomized computability. Let Ω be a set, $\Omega_0 := \Omega \cup \{ \perp \}$ where $\Omega \cap \{ \perp \} = \phi$, and (Ω_0, \sqsubseteq) the complete poset (cpo) partially ordered by $\perp \sqsubseteq \perp \sqsubseteq x \sqsubseteq x$ for $\forall x \in \Omega$. Define the *strict* function $f_0: \Omega_0 \to \Omega_0$ for \forall partial function $f: \Omega \to \Omega$ by $f_0(\perp) := \perp$ and $f_0(x) := \text{if } x \in \Omega$ domain (f) then f(x) else \perp . Let $[\Omega_0 \to \Omega_0]$ be the cpo of \forall Scott continuous functions $f_0: \Omega_0 \to \Omega_0$ partially ordered by $f_0 \sqsubseteq g_0$ iff $\forall x \in \Omega_0[f_0(x) \sqsubseteq g_0(x)]$.

Let V be the KB-space of all bounded measures on a measurable space $(\Omega, \mathcal{B}(\Omega))$. Now $\mu \in V$ can be viewed as a formal linear combination $\mu = \sum_{x \in \Omega} p_x \mathbf{1}_x$ of point masses $\mathbf{1}_x$, where $\forall x \in \Omega, \forall p_x \in \mathbf{R}$ and $\|\mu\| = \sum_{x \in \Omega} |p_x| < \infty$. Then Ω_0 and $[\Omega_0 \rightarrow \Omega_0]$ are naturally embedded into $\mathcal{H}(V)$ and $[\mathcal{H}(V) \rightarrow \mathcal{H}(V)]$ respectively by the *embedding* e defined by:

(26) $e(x) := \text{if } x \in \Omega \text{ then } \mathbf{1}_x \text{ else } \mathbf{0} \ (\forall x \in \Omega_0), \text{ and}$

 $e(f)e(x) := \text{if } fx \neq \bot \text{ then } \mathbf{1}_{fx} \text{ else } 0 \ (\forall f \in [\Omega_0 \to \Omega_0]).$

e(f) is uniquely extended to a positive operator $T_{e(f)}: V \to V$ by $T_{e(f)}(\mu)$:= $\sum_{x \in \mathcal{G}} p_x \cdot \mathbf{1}_{f(x)}$, which are \leq -positive order continuous. So if $f: \Omega \rightarrow \Omega$ is partial computable, then the operator T_f defined by f is \leq -Scott continuous. Thus we assert:

(27) (Church's thesis) Let V and W be KB-spaces. An operator $T: \mathcal{H}(V) \rightarrow \mathcal{H}(W)$ is Scott continuous if there is a partial computable function f such that for $\forall \mu \in \mathcal{H}(V), T(\mu) = \mu \circ f^{-1}$.

14. The graph model $\mathcal{D}\omega$. We construct the reflexive graph model $\mathcal{D}\omega$ for randomized computation similar to Scott's $\mathcal{D}\omega$ [3]. Let ω be the set of natural numbers and $\mathcal{D}\omega := \{x | x \subset \omega\}$. First we fix the *coding* of binary rationals in the unit interval [0, 1] onto ω and the *coding* of an effectively given countable order dense set S in a given basic space X onto ω . We call an *n*-ary relation R in ω^n single valued if, for $\forall (x_1, \dots, x_{n-1})$, there is atmost one x_n s.t. $(x_1, \dots, x_n) \in R$ and define the coding of the ordered pairs, finite sets and finite functions as follows:

(28) (i) $\langle x, y \rangle := (x+y)(x+y+1)/2+y, (\langle x, y \rangle)_1 := x, \text{ and } (\langle x, y \rangle)_2 := y$ ($\forall x, y \in N$). (ii) For $\forall n \in N$, define the coding of a finite set A_n by (a) $A_n = \phi \Leftrightarrow n=0$, and (b) a non-empty $A_n = \{x_1, \dots, x_k\}$ with $x_1 < \dots < x_k \Leftrightarrow n = \sum_{i \le k} 2^x i$. (iii) A set A is said to be single valued if $\{(x, y) | \langle x, y \rangle \in A\}$ is a single valued relation. (iv) For $n \in N$, define the coding of the finite function ν_n by $\nu_n = \{(x_1, y_1), \dots, (x_m, y_m)\}$ with $x_1 < \dots < x_m \Leftrightarrow n = \{\langle x_1, y_1 \rangle, \dots, \langle x_m, y_m \rangle\}$.

Now we define our domain $\mathcal{D}\omega$ to be the set of single valued sets in $\mathcal{D}\omega$ partially ordered by the canonical ordering of functions \leq .

Then $(\mathcal{F}\omega, \leq)$ is a ccp with the Scott topology induced by \leq . Let $\mathcal{O}_n := \{\mu \in \mathcal{F}\omega | \nu_n \leq \mu\}$ for \forall finite $\nu_n \in \mathcal{F}\omega$. Then $\{\mathcal{O}_n | n \in \omega\}$ forms a base for the Scott topology on $\mathcal{F}\omega$. Moreover we have:

(29) Let $T: \mathcal{D}\omega \to \mathcal{D}\omega$. (i) If T is Scott continuous. Then T is monotone. (ii) T is Scott continuous iff $T(\mu) = \sup \{T(\nu) | \nu \leq \mu, \nu \text{ finite}\}.$

Thus a Scott continuous $T: \mathcal{D}\omega \to \mathcal{D}\omega$ is determined by its value on the finite functions. So we can encode T as an element of $\mathcal{D}\omega$:

Define graph: $[\mathscr{G}\omega \rightarrow \mathscr{G}\omega] \rightarrow \mathscr{G}\omega$ and fun $\in [\mathscr{G}\omega \rightarrow \mathscr{G}\omega]$ by:

(30) (i) graph (T) := { $\langle n, m \rangle | \nu_n = T(\nu_n)$ } for $\forall T \in [\mathscr{G}\omega \to \mathscr{G}\omega]$.

(ii) fun $(u)(\mu) := \bigcup \{ \nu_n | \exists \nu_n \leq \mu [\langle n, m \rangle \in u] \} (\forall \mu \in \mathcal{F} \omega)$

for $\forall u \in \mathcal{D}\omega$. Then we have;

(31) (i) graph: $[\mathscr{F}\omega \to \mathscr{F}\omega] \to \mathscr{F}\omega$ is Scott continuous. (ii) For $\forall u \in \mathscr{F}\omega$, fun $(u) \in [\mathscr{F}\omega \to \mathscr{F}\omega]$. (iii) fun: $\mathscr{F}\omega \to [\mathscr{F}\omega \to \mathscr{F}\omega]$ is Scott continuous. (iv) For $\forall T \in [\mathscr{F}\omega \to \mathscr{F}\omega]$, fun (graph (T)) = T. (v) For $\forall u \in \mathscr{F}\omega$, graph (fun (u)) $\supset u$. (vi) (Reflexivity of $\mathscr{F}\omega$) $[\mathscr{F}\omega \to \mathscr{F}\omega] \simeq \mathscr{F}\omega$ (order isomorphism).

With Scott [3], the language LAMBDA has one primitive constant symbol 0, two unary function symbols (x+1) and (x-1), one binary function symbol (u(x)), and one ternary function symbol $(z \supset x, y)$ and one variable binding operator $(\lambda x \cdot \tau)$. The formation of the terms is defined in the obvious way. The semantics of LAMBDA in $\mathcal{D}\omega$ is defined as follows:

 $\begin{array}{ll} (32) \quad m\llbracket 0 \rrbracket := \{\langle 0, 1 \rangle\}, \ m\llbracket \eta + 1 \rrbracket := \{\langle x + 1, \ p \rangle | \langle x, \ p \rangle \in m\llbracket \eta \rrbracket\}, \ m\llbracket \eta - 1 \rrbracket \\ := \{\langle x - 1, \ p \rangle | \langle x, \ p \rangle \in m\llbracket \eta \rrbracket\}, \ m\llbracket \zeta \supset \eta, \ \theta \rrbracket := \lambda x \in \mathcal{D}\omega \cdot [\{\langle n, \ p \rangle | \langle \ell, \ p \rangle \in e_{\xi}(x), \ r \in e_{\xi}(x)\} \\ \end{array}$

 $\begin{array}{l} \langle \ell, n \rangle \in m[\![\eta]\!] \} \cup \{\langle n, p \rangle | \langle \ell, p \rangle \in e_{\sim \zeta}(x), \langle \ell, n \rangle \in m[\![\theta]\!] \} \}, \text{ where } e_{\zeta} = \lambda x \in \mathcal{D}\omega \cdot \{\langle n, m \rangle | \langle \ell, m \rangle \in x, \langle \ell, 1 \rangle \in m[\![\zeta]\!] \} \text{ and } e_{\sim \zeta} = \lambda x \in \mathcal{D}\omega \cdot \{\langle n, m \rangle | \langle \ell, m \rangle \in x, \langle \ell, 0 \rangle \in m[\![\zeta]\!] \}, m[\![\eta(\mu)]\!] := \text{fun } m[\![\eta]\!]m[\![\mu]\!], \text{ and } m[\![\lambda x \cdot \tau]\!] = \{\langle n, m \rangle | m[\![\tau]\!][\nu_n/x] = \nu_m \}. \end{array}$

Then the following definability theorem is obtained:

(33) (LAMBDA definability) An operator $T: \mathcal{D}\omega \to \mathcal{D}\omega$ is computable iff graph (T) is LAMBDA-definable.

References

- J. Lambek and P. J. Scott: Aspects of higher order categorical logic. Mathematical Applications of Category Theory (ed. J. W. Gray). Contemporary Mathematics, vol. 30, Amer. Math. Soc., 145-174 (1983).
- [2] D. S. Scott: Continuous lattices. Lecture Notes in Math., vol. 274, pp. 97-136 (1972).
- [3] ——: Data types as lattices. SIAM J. Comput., 5, 522-587 (1976).
- [4] ——: Outline of a Mathematical Theory of Computation. Proc. 4th Princeton Conf. on Info. Sci. and Syst., Princeton University, pp. 169-176 (1970).
- [5] S. Yamada: A mathematical theory of randomized computation. I, II. Proc. Japan Acad., 64A, 115-118; 155-158 (1988).