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Based on the results of earlier notes [5], we shall show that the. cate-
gory of randomized domains forms a cartesian closed monoid, which yields
c.c.m, reduction calculi equivalent to type-free -calculi [1]. Then we shall
axiomatize randomized domains, and show that our randomized domain
theory is a natural probabilistic extension of Scott’s theory. We also con-
struct the reflexive graph model w similar to Scott’s w [3].

11. The universal randomized domain .@. A reflexive object
in the c.c.c. CBL is constructed in quite the same way with the construction
of D in Scott’s theory [2]" Let 0"= be any nontrivial domain in CBL
and n+l---[n--.n] (t’/0). Define ," --.+ and " +1--@ by
0(x) "-2y e -@0" x (Vx e -0), 0(Y) "= y(0) (Vy e -@1), n+l(x) "--n X

(Vx e -@n+), and n+(y) "--fn oy on (Vy e +2), or Vn0.
Then (, q}neN is a projective system of the domains in CBL.
Let x denote the n-th coordinate o x= (x)__0 of the product I-[ %0-@n.

Define the projective limit _@ by "=lim (n, q}= {X e l-I %o nlVn e N,
qrn+(Xn+)--X}. Then _@ e CBL by (15)-(16). Define evaluation, in
by x.y "=sup Xn+(Yn). Then the evaluation on is positive order con-
tinuous. And we have"

(25) (i) (Extensionality) (a) x_y--Vz e, x. z_y. z. (b) x=y-
Vz e, x.z=y.z. (ii) (Comprehension) Define for f e [-_@], Vf
supn{Ry e n (f(Y))n}. Then for Yy e, f(y)= [f. y. (iii) (Reflexivity)
.=[.-] up to order isomorphism (and homeomorphism in the norm
topology).

Now that we have constructed a reflexive domain .@, the constructions
of universal domains are straightforward" In fact, let X be the two point
space of Boolean values and 0 "-q((gx(X)) and construct .@ with this 0.
Then we can define positive order continuous pairing unction and as-
sociated selector functions. So _@ is a retract of with these
unctions. Hence is a universal domain of CBL and CBL forms a car-
tesian closed monoid.

The notion of band in our theory exactly corresponds to the notion of
retract in Scott’s theory. We recall the definitions"

(25) LetVbeaBL. (i) AsetAcVissolid if xeA, yeVand
Ix]@y cA. (ii) An ideal of V is a solid vector subspace of V. (iii) An
ideal B of V is a band of V if or v non-empty ScB possessing a supre-
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mum sup S, sup S e B. (iv) A band B of V is a projection band if V is the
direct sum of B and B, where B "={x e VI Ix]Alyl=0 for vye B}. The
projection P" V-.B is called a band pro.]ection.

Then a band B of a KB-space V is a solid subspace which is a KB-space
with the relative order and norm topologies and conversely. The band
projection P" VoB is a retraction of V onto B in both order and norm
topologies of V. Also P" q(V)-q((B). So every randomized domain can
be obtained by some band projection from the vniversal domain .

12. The axiom systems for randomized domains. We present some
axiom systems of randomized domains (cf. [4])"

Axiom system A. (Algebraic system)
Axiom Al=Axiom 1 and Axiom A2=Axiam 2 in 2.

Axiom A. A randomized domain is the positive unit hemisphere
q((V) of an algebraic KB-space V.

Axiom A4. operators between randomized domains are positive.
Axiom system E. (Effective system)

Axiom El=Axiom 1 and Axiom E2-Axiom 2.
Axiom E. A randomized domain is the positive unit hemisphere

q((V) of a KB-space V.
Axiom E4. Operators between randomized domains are positive.
Axiom E. A randomized domain has an effectively given countable

basis for the order topology.
Axiom system S. (Separable system)

Axiom Sl=Axiom 1 and Axiom S2=Axiom 2.
Axiom S. A randomized domain is the positive unit hemisphere

q((V) of a norm separable a-order complete KB-space V.
Axiom $4. Operators between randomized domains are positive.
Axiom S. A randomized domain has an effectively given countable

basis for the order topology.
13. Embedding of cpo’s and randomized computability. Let 12 be a

set, 0 "---tg{_]_} where t9{_[_)=, nd (/20, _) the complete poset (cpo)
partially ordered by _[__[_x_x for Vx e 9. Define the strict function

f0" tg0tg0 for V partial unction f" 9-t9 by f0(_[_) "= _[_ and fo(X) "= if x e
domain (f) then f(x) else _[_. Let [20-+90] be the cpo of V Scott continuous
functions f0" t20-+t20 partially ordered by fo_go iff Vx e ?2o[fo(X)_go(X)].

Let V be the KB-space of all bounded measures on a measurable space
(9, _(9)). Now / e V can be viewed as a tormal linear combination /
=eopl of point masses 1, where Vx e/2, vp e R and ]]/]l=e,[pl

oo. Then 90 and [90-*9o] are naturally embedded into ((V) and [/’(V)
--.q((V)] respectively by the embedding e defined by:

(26) e(x) "= if x e 9 then 1 else 0 (Vx e f20), and
e(f)e(x) "=if fx=/=

_
then 1 else 0 (Vf e [tg0tg0]).

e(f) is uniquely extended to positive operator T()" V-+V by T((Z)
"=eP" 1), which are _-positive order continuous.
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So if f" 9--2 is partial computable, then the operator T defined by

f is g-Scott continuous. Thus we assert"
(27) (Church’s thesis) Let V and W be KB-spaces. An operator

T" q((V)-+q((W) is Scott continuous if there is a partial computable func-
tion f such that for V/2 e J((V), T(/)=/2 f-.

14. The graph model o. We construct the reflexive graph model
for randomized computation similar to Scott’s [3]. Let w be the

set of natural numbers and "=(x]x}. First we fix the coding of
binary rationals in the unit interval [0, 1] onto and the coding of an el-
fectively given countable order dense set S in a given basic space X onto. We call an n-ary relation R in o single valued if, for V (x,,..., Xn_),
there is atmost one x s.t. (x,..., Xn)e R and define the coding of the
ordered pairs, finite sets and finite functions as follows"

(28) (i) (x, y} "=(x+y)(x+y+l)/2+y, ((x, y}), "=x, and((x,y}) "=y

(Vx, y e N). (ii) For Yn e N, define the coding of a finite set An by (a) An
=@n=0, and (b) a non-empty An---{X, ...,X} with x...x@n
=]2i. (iii) A set A is said to be single valued if {(x, y)](x, y} e A} is
a single valued relation. (iv) For n e N, define the coding of the finite
function , by )n------{(Xl, Yl), ", (Xm, Ym)} with x x@n={(x, y}, ...,

Now we define our domain w to be the set of single valued sets in
w partially ordered by the canonical ordering of functions _.

Then (, _) is a ccp with the Scott topology induced by _. Let
( "= {Z e l’n__/} for V finite , e. Then {([n e w} forms a base for
the Scott topology on o. Moreover we have"

(29) Let T" oo-+w. (i) If T is Scott continuous. Then T is mono-
tone. (ii) T is Scott continuous iff T(/)=sup {T()I,_/,, finite}.

Thus a Scott continuous T" -. is determined by its value on the
finite functions. So we can encode T as an element of w"

Define graph" [-w]-*w and fun e [w--w] by"
(30) (i) graph (T) "= {(n, m}l,= T(,)} for VT e [-w].

(ii) fun (u)(/) "=

for Yu e w. Then we have;
(31) (i) graph" [o--o]--.w is Scott continuous. (ii) For Vu e o,

fun (u)e [9-w]. (iii) fun" w--[w--w] is Scott continuous. (iv) For
YT e [w-+o], fun (graph (T))= T. (v) For Yu e o, graph (fun (u))u.
(vi) (Reflexivity of w) [o--]-w (order isomorphism).

With Scott [3], the language LAMBDA has one primitive cnstant
symbol 0, two unary function symbols (x+ 1) and (x- 1), one binary function
symbol (u(x)), and one ternary function symbol (zx, y) and one variable
binding operator (x.r). The formation of the terms is defined in the ob-
vious way. The semantics of LAMBDA in is defined as follows"

(32) m0 "--{(0, 1}}, m[]+ 1 "=((x + 1, p}[(x, p} e m[}, m[-l,
=((x--I,p}](x, p} em[v.), m,O "= 2x e w.[{(n, p}[(g, p} e e,(x),
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<g, n} e mE]} LJ {<n, p>l<g, p> e e_:(x), <, n} e mO}], where e:=x e o.
{<n, m} <g, m} e x, <g, 1} em5} and e_:=2xeo.{<n,m}l<,m}ex, <,
0} e m[#}, m[(/) "=fun m[m[[, and m[x.r={<n, m}
1)m}

Then the ollowing definability theorem is obtained:
(33) (LAMBDA definability) An operator T: o->w is computable

iff graph (T) is LAMBDA-definable.

References

1 J. Lambek and P. J. Scott.: Aspects of higher order categorical logic. Mathe-
matical Applications of Category Theory (ed. J. W. Gray). Contemporary Mathe-
matics, vol. 30, Amer. Math. Soc., 145-174 (1983).

2 D. S. Scott: Continuous lattices. Lecture Notes in Math., vol. 274, pp. 97-136
(1972).

[3 ----: Data types as lattices. SIAM J. Comput., .5, 522-587 (1976).
4 ----: Outline of a Mathematical Theory of Computation. Proc. 4th Princeton

Conf. on Info. Sci. and Syst., Princeton University, pp. 169-176 (1970).
5 S. Yamada: A mathematical theory of randomized computation. I, II. Proc.

Japan Acad., 54A, 115-118 155-158 (1988)o


