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1o Introduction. Recently Mori proved the existence of minimal
models f.or projective algebraic 3-folds ([5]) and it is expected that mini-
mal models for projective manifolds exist in all dimension. Hence it is
important to study minimal algebraic varieties.

In [6], the author proved semistability o tangent bundles of smooth
minimal algebraic varieties with respect to the canonical polarization and
an inequality of Chern numbers of Miyaoka-Yau type for them. In [1]
Enoki generalized the author’s reslt about semistability to the case of
minimal Kiihler spaces. Actually he proved semistability of tangent sheaves
with respect to the canonical (weak) polarization for minimal K/ihler spaces
([1, Theorem 1.1]).

Their methods are a little bit different because there are no ample
divisors on Kiihler spaces. Actually the author considered not only a per-
turbation ot the canonical polarization but also a perturbation o the tngent
bundle itself in.[6] while Enoki used only a perturbation of the canonical
polarization in [1]. This explains why Enoki’s method does not yield an
inequality of Chern numbers.

The purpose of this short note is to show that we can easily get an ine-
quality of Chern numbers .of Bogomolov type for minimal varieties just by
combining the both methods.

Theorem 1. Let X be a minimal algebraic variety of dimension n(3)
over C such that codimSing X2. Then the inequality

(-- 1)nC(X) (-- 1)n-n_-c?-(X)c.(X)
holds.

We note that this inequality is a corollary of the result in [4] in the
case o n=3. In the case that Kx is ample, we may deduce the inequality
by using [1, Theorem 1.1], [3] and [2]. Unfortunately this inequality does
not seem to be sharp. This inequality can be proved by constructing a
Kiihler metric with a good contr.ol of the Ricci tensor. To get a sharp
inequality (i.e. an inequality of Miyaoka-Yau type), it seems to be necessary
to construct some (singular) Kiihler-Einstein metric .on X with a good con-
trol of the full curvature tensor.
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2. Proof of Theorem 1. Since the proof is almost an immediate con-
sequence of the methods in [6] and [1], we shall give only a sketch of it.
See [6] and [1] for the detail.

Let X be as in Theorem 1 and let " M----X be a Hironaka resolution of
X such that the exceptional set is a divisor with only simple normal cros-
sings as singularities. Let H be a smooth ample divisor on M. Let us cover
M by a finite number of open unit polydisks

A, {(zl, ..., z.) [I zl< 1, i 1, ..., n}
such that if A, H=/= , then

A. H= {(zl., ,, z)[zl. =0}.
Let V be a Q-vector bundle on M defined by

VIA, (C)(3 3z., ..., 3z) if A, Q H= ;D,
vl.--OA(zo)//z., /z, .,/z.) if .Ue.

By an easy rnodification .of the analysis in [6, Section 2] using the idea in
[1, Section 3], we get a bounded nondegenerate almost tIermitian-Einstein
metric which has a good curvature in L-sense on V (see Lernma 3.1 and
Proposition 3.2 in [1]) with respect to a singular K/hler form on M which
has a pole of order 1/m along H. Here we have used the singular Khler
metric as in [6] instead of the perturbation by a smooth K/hler form in [1],
i.e. the perturbation by a smooth K/hler f.orm t in Pr.oposition 3.2, (b) in
[1] is not necessary because it has been absorbed in the perturbation of the
tangent bundle. This is the key point of the proof. Then by using the
same computation as in [1, Section 4], we see that V is f*(=*(Kz)+ (1/m)H)-
semistable on some finite Galois covering f: N-+M as in [6]. Since
f*(u*(Kz)+ (l/re)H) is ample, we get a Bogornolov inequality for V on N
(cf. [2]). We note that =*(c,(X))-c(M)=c-(X)c(X) holds by the assump-
tion that codimSing X>2. Dividing the both sides of the inequality by
deg f and letting m tend to infinity as in [6], we complete the pr.oof of
Theorem 1.

For the cotangent sheaf D, by taking the dual of V and noting that
’9

_
9, we obtain the following theorem.

Theorem 2 (a part of [1, Corollary 1.2]). Let X be a minimal algebraic
variety over C. Then 9 is Kz-semistable.

We can easily generalize Theorems I and 2 to the quasiprojective case
as in Section 5 of [6] using the idea in [7].
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