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1. Introduction. Recently Mori proved the existence of minimal
models for projective algebraic 3-folds ([5]) and it is expected that mini-
mal models for projective manifolds exist in all dimension. Hence it is
important to study minimal algebraic varieties.

In [6], the author proved semistability of tangent bundles of smooth
minimal algebraic varieties with respect to the canonical polarization and
an inequality of Chern numbers of Miyaoka-Yau type for them. In [1]
Enoki generalized the author’s result about semistability to the case of
minimal Kéhler spaces. Actually he proved semistability of tangent sheaves
with respect to the canonical (weak) polarization for minimal Kéhler spaces
({1, Theorem 1.1)).

Their methods are a little bit different because there are no ample
divisors on Kihler spaces. Actually the author considered not only a per-
turbation of the canonical polarization but also a perturbation of the tangent
bundle itself in [6] while Enoki used only a perturbation of the canonical
polarization in [1]. This explaing why Enoki’s method does not yield an
inequality of Chern numbers.

The purpose of this short note is to show that we can easily get an ine-
quality of Chern numbers of Bogomolov type for minimal varieties just by
combining the both methods.

Theorem 1. Let X be a minimal algebraic variety of dimension n(>3)
over C such that codimSing X >2. Then the inequality

(=Dt < (— 1 22Xy X)

holds.

We note that this inequality is a corollary of the result in [4] in the
case of n=38. In the case that K, is ample, we may deduce the inequality
by using [1, Theorem 1.1], [3] and [2]. Unfortunately this inequality does
not seem to be sharp. This inequality can be proved by constructing a
Kéahler metric with a good control of the Riceci tensor. To get a sharp
inequality (i.e. an inequality of Miyaoka-Yau type), it seems to be necessary
to construct some (singular) Kiahler-Einstein metric on X with a good con-
trol of the full curvature tensor.
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2. Proof of Theorem 1. Since the proof is almost an immediate con-
sequence of the methods in [6] and [1], we shall give only a sketch of it.
See [6] and [1] for the detail.

Let X be as in Theorem 1 and let z: M—X be a Hironaka resolution of
X such that the exceptional set is a divisor with only simple normal cros-
sings as singularities. Let H be a smooth ample divisor on M. Let us cover
M by a finite number of open unit polydisks

A,={@, - -, )| |24<1, i=1, - - -, m}
such that if 4,N H=+ ¢, then
AdNH={(z, --+,2)|2,=0}.
Let V be a @-vector bundle on M defined by
V|Aa=0M(a/az1a’ "‘:a/az:) if AaﬂH_—_—@,
V|d,=0.u((2)""/02%, 8/62%, - - -,9/62)  if A, NH#p.
By an easy modification of the analysis in [6, Section 2] using the idea in
[1, Section 3], we get a bounded nondegenerate almost Hermitian-Einstein
metric which has a good curvature in L'-sense on V (see Lemma 3.1 and
Proposition 3.2 in [1]) with respect to a singular Kéhler form on M which
has a pole of order 1/m along H. Here we have used the singular Kéahler
metric as in [6] instead of the perturbation by a smooth Kahler form in [1],
i.e. the perturbation by a smooth Kéahler form t® in Proposition 3.2, (b) in
[1] is not necessary because it has been absorbed in the perturbation of the
tangent bundle. This is the key point of the proof. Then by using the
same computation as in [1, Section 4], we see that V is f*(z*(Ky)+ 1 /m)H)-
semistable on some finite Galois covering f:N—M as in [6]. Since
f¥(@*(Ky)+(1/m)H) is ample, we get a Bogomolov inequality for V on N
(cf. [2]). We note that z*(c,(X))"*cy(M) = c?%(X)e,(X) holds by the assump-
tion that codimSing X>2. Dividing the both sides of the inequality by
deg f and letting m tend to infinity as in [6], we complete the proof of
Theorem 1.

For the cotangent sheaf 2%, by taking the dual of V and noting that
n*¥ L C 0%, we obtain the following theorem.

Theorem 2 (a part of [1, Corollary 1.2]). Let X be a minimal algebraic
variety over C. Then % is K y-semistable.

We can easily generalize Theorems 1 and 2 to the quasiprojective case
as in Section 5 of [6] using the idea in [7].
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