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On Cayley.Hamilton’s Theorem and
Amitsur.Levitzki’s Identity
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Department of Mathematics, Kyoto University

(Communicated by Shokichi IYAN&(IA, M. ft. A., March 12, 1987)

1o The purpose of this note is to prove a generalization of the clas-
sical Cayley-Hamilton’s theorem and a tensor version of Amitsur-Levitzki’s
identity concerning matrices.

Let V be an n-dimensional vector space over the field of complex num-
bers and A,...,A be linear endomorphisms of V. We define a linear
map AA. AA" /’V >/’V (/’V is the skew symmetric tensor pro-
duct of V) by

(A/. /A)(u/. /%)=(1/p !)e(-1)Au,/ "’"/Au(,
where (--1) is the signature of the permutation a e (R) and u,..., % e V.
Note that the equality A(,A...AA()=AA...AA holds or any per-
mutation a e (R). For X e End (V), we define invariants f(X) e C by

det (I-X)= ,L0 f(X)-,
where I is the identity matrix. Then we have

Theorem 1. Let X be a linear endomorphism of V and p be an integer
(l<p<=n). Then, by putting r-- n+l-p, the following identity holds"

XalF,o+...+o: x/ Ax+f(x) F,o ..o_ A Ax+
( 1 )

,,o ,,o
r- o

XA AX+f(X) IA AI O"+f_,(X) ,, +,=,
aiO

A"V---A"V,
where the sum is taken over all the combinations of integers (a) satisfying
the conditions under Z. (We consider X=I.)

Remark. In the case p= 1, the above identity is reduced to the form"
X"+fl(X)X"-1 +... +f,(X). I---0" V >V,

which is nothing but the classical Cayley-Hamiltn’s theorem.
Proof. We have only to prove the theorem in case where X is a dia-

gonal matrix because such a matrix constitutes a dense subset of the space
of matrices. Let {a, ., a,} be the eigenvalues X and {e, ., e,} be a
basis o V such that Xe--oe. We prove that the element eA...
e/V is mapped to 0 by the left hand side the identity (1). We put
V={e, ..., %} and V={%+, ., e}. First, we have
( 2 ) (X’A /\XO(eIA A%) (lip .) ,, (- 1)’Xae(,)A AXe()

=(1/p !) E(R), ( ’--.
+/-) () o(p)e(1)/ / e(p)

=(1/p !) ](R) a,i,...@’’eA.../ e.
We denote by S and T the Schur functions corresponding to the partition
2 (, ..., ) (_...

_
O) with variables (a, ..., a} and {a+, ., a.),
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respectively. (See [2], [3], [5]. For example, S--a+... +a and T=a/
+.. +a.) Then for a positive integer k, the Schur function S is equal to
the trace of the linear map X"S(V)oS(V) defined by X’(u... u)
=Xu Xu. (u, u e S(V) is the symmetric tensor product of
u e V:) Hence we have

=(lp !) ,+...+,: <,>...?<,,.
Combining with the equality (2), we hve
( 3 ) ,+...+: (X’A AX)(eA Ae)=S.eA... Ae.

Next, we calculate the trace of the linear map X" AVAv defined
by XJ(uA .Au)=XuA... AXu. Since AV is a direct sum of X-invariant subspaces AV@A-v (/=0, .., k), the trace of X is

which is, by definition, equal to ,<...<,a,...a=(-1)f(X). Hence,
combining with (3), we have

f(x) ,+...+,:,_ x,A... AX’(e,A A
=(-- 1) :0 S,T-,S,_.eA... Ae.

From this equality, it follows that the element eA... Ae is mapped, by
the left hand side of (1), to

=o (-1)-q(Sq-SSq-+SSq- +(-1)qS}T_.eA. Ae.
Using Littlewood-Richardson’s rule (cf. [3]), we have

SlSq_=Sq_+l.-,+Sq_
and substituting this equality into the above, we see that it is equal to
(-- 1)T. eA. Ae. But this is 0 becauserdim V. Hence the identity
(1) holds, q.e.d.

2. Next, we state and prove a tensor version of Amitsur-Levitzki’s
identity by using Theorem 1.*) For A, ..., A e End (V), we define an
endomorphism A A of the symmetric tensor space S(V) by

(A A)(u, %)= (1/p ) A,u(,) Au().
It is easy to see that the equality A() A()=A A holds for any
permutation a e.

Theorem 2. Let X,...,X be linear endomorphisms of V. Then
the following identity holds"
( 4 ) ee (-1)(X()X()) (X()X())

s(v) s.(v).
Remark. It is easy to see that the contraction of the linear map

A A S(V)S(V) is= Tr A.Ao oo oA
+ (AA) A Ao Ao A.

Hence, by contracting the above equality (4) n-1-times, we obtain a matrix
identity

*) Dr. K. Kiyohara kindly communicated to the author another proof using the
graph theory.
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e, (-- 1)X(X() "X(,.n =0 V ; V,
which is Amitsur-Levitzki’s identity ([1], [6]).

Proof. For A, ..., A e End (V), we define linear maps
A [=] [:] A S (V) >/V and A / /A / V

by
> S(V)

and
1

(A/.../Av)(u/.../up)=. ,e(R) (--1)Au() Au().

(Note that equalities A()... A()= (--1)A A and A()...
A()=(-1)A...Av hold or any a e.) Then the ollowing com-
position ormulas hold.

1(AA AAv)(B. Bp)= (--1)(AB())... (AvB(p))

1(A. Av)(B Bp)= (-1)(AB()) (AB())

1 (-- 1)(A(B) (A()B)
P
1(AA’’’ AA,)(BA AB,)= (AB())A...

Now, we calculate the 2ollowing sum o linear maps
( 5 ) ee=. (--1)(X(n+,)A AX6(2n))

(X,()AIA" AI)(X(). X()I) S(V) >S(V)
in two ways. First, rom the above composition ormula, we have

(X()AIA AI)(X() X,()I)
1 = (_,I)(X()X())... X(_)X(+,)...

n

Hence, by composing with the map X(n+)’" .X,(), it *ollows that (5)
is equal to

n.n

(Xaz(2n_l)Xa(n)) (Xat(2n)i)+, 1 (__l)n_ Ea@@=n Ere@n (--1)a(--1)n.n

(T e n is considered as a permutation of the letters {n+ 1,..., 2n}.)

n
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(__1)n-1

(X(._)X(,)) X()+een (-- 1)(X(n +1)X(1))

(X(n)X()).
On the other hand, since X()/IA- /I (1/n) Tr X() I/. /I (the case
p=n in Theorem 1), (5) is equal to,(_1) 1 Tr X() (X(n )/ /X(2n))(X,(2) , X,(,,) V-]I)

n

n.n!
,(R)., (-- 1)( 1): Tr X(1). (Xar(n 1)Xa(2))

(X(n_)X()) (X()I)
1 ,,e,, (_1) Tr X(,). (X(n+,)X()) (Xa(2n_l)Xa(n)) Xa(2n).
n

From these two expressions, we obtain the equality
( 6 ) (n--l) e(R)2 (--1)(X(n+)X(1)X(2)) (X(n+)X(3)) (X(_)X(n))

Xa(2n) + (-- 1)-’ e= (-- 1)’(X(, )X(,)) (X,(=)X())
(--1) Tr X(). (X(+)X()) (X(_)X()) X().

Next, starting rom the composite
,e:= (--1)(X(=+=)A X,(n)AI)(X,(+,)AIA... AI)
(X() X()) S(V) >S(V),

we obtain, in the same way, the equality
(7) (n--l) (--1)(X(+)X(+)X())o(X(+)X())o

X()+ (-- 1)-’, (-- 1)(X( )X())
e (--1) Tr X(+).(X(,+)X()) (X()X(_))

We rearrange the indices in (6), (7) and add these two equalities. Then,
Cwo terms are cancelled and we obtain the desired identity (4), q.e.d.
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