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1o Introduction. In generalizing the Aitken 3-process in one dimen-
sion to the case of n-dimensions, Henrici [1, p. 116] has considered a
formula, which is called the Aitken-Steffensen formula. In [2], we have
studied the above Aitken-Steffensen formula for systems of nonlinear equa-
tions and shown [2, Theorem 2]. Moreover, in [3], we have considered a
method of iteration for the above systems, which is often called the
Steffensen iteration method, and shown [3, Theorem 1]. [3, Theorem 1]
improves the r,esult of [2, Theorem 2].

We have given the proof of [3, Theorem 1], in which the Sherman-
Morrison-Woodbury formula [3, Lemma 4] is used only to determine
(AX(x(’)) -1, but in this paper we show that the proof can be simplified
without using the formula. And we also present a numerical example in
order to show the efficiency of the Steffensen iteration method.

2. Statement of results. Let x--(x, x2, ..., x) be a vector in R and
D a region contained in Rn. Let f(x)(lgign) be real-valued nonlinear
functions defined on D and f(x)=(f(x), f(x),..., f(x)) an n-dimensional
vector-valued function. Then we shall consider a system of nonlinear
equations
(2.1) x=f(x),
whose solution is . Let [[x[[ and [[A[[ be denoted by

Ilxll=maxlxl and IIAIl=max
l_i’<n l<:i_n j=l

where A=(a) is an n n matrix. Define f()(x) e R (i--O, 1, 2, .) by
f((x)=x,
f()(x)--f(f(-l)(x)) (i--1, 2, ...).

Put

d(’)--f()(x())- for i-l, 2, ...,
and then define an n n matrix D(x(’)) by

D(x())=(d(O,), d(,), ..., d(-,)).
Throughout this paper, we shall assume the following five conditions

(A.1)-(A.5) which are the same as those of [3].
(A.1) fi(x) (lgin) are two times continuously differentiable on D.
(A.2) There exists a point e D satisfying (2.1).
(A.3) [[J(x)[[<l, where J(x)=(3f(x)/3x)(lgi,
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(A.4) The vectors d(,), d(,), ..., d(n-’), ]g-0, 1, 2, ..., are linearly
independent.

(A.5) in (Idet
Now, we consider Steffensen’s iteration method

(2.2) x( ) x() zIX(x())(AX(x())) x(x()),
where an n-dimensional vector Ax(x), and n n matrices zIX(x) and AX(x)
are given by

x(x)=f()(x)- x,
zlX(x)=(f()(x) x, ..., f(n)(x)-- f(-)(X))

and
AX(x)-(f()(x) 2f()(x) x, ..., f( /)(x)- 2f()(x) f(n-)(X)).

In this paper, we also show the following
Theorem 1. Under conditions (A.1)-(A.5), there exists a constant M

such that an estimate of the form

holds, provided that the x() generated by (2.2) are suciently close to the
solution x of (2.1).. Preliminaries. For the proof o Theorem 1, we need the follow-
ing three lemmas given in [3]:

Lemma 1 ([3, Lemma 1]). Let A and C be n n matrices and assume
that A is invertible, with A-lgK. If A--CIgK and KK<I, then C
is also invertible, and C-]] gK/(1-KK).

Lemma 2 ([3, Lemma 2]). Under conditions (A.1)-(A.5), there exists
a constant L such that the inequality

(D(x()))-]L d(.)-holds for x
Lemma ([3, Lemma3]). Under conditions (A.1)-(A.5), nn ma-

trices AX(x()) and AX(x()) are invertible, and there existconstants L and
L such that the inequalities
(3.1) (AX(x()))- [[L d(,) [-,
(3.2)
hold for x

Lemmas I and 2 are used in proving Lemma 3. By the definition, we
have
(3.3) AX(x()) (J() I)D(x())+ Y(x()),
(3.4) AX(x())=(J()--I)AX(x())+ Y(x()),
where Y(x) and Y(x) are n n matrices. By (A.1)-(A.3), we may choose
constants L and L such that, for x
(3.5) Y(x()) gL d(’) ,
(3.6) Y(x()) i d(,

Here we note that the inequality (3.1) holds with L=L/L by choosing a
constant L so as to satisfy

1--J()[--LL
Similarly we obtain the inequality (3.2) with L=L/L by choosing a



188 T. NODA [Vol. 63 (A),

constant L satisfying
J() L,L d’ >=L> O.

4. Proof of Theorem 1. We shall prove Theorem 1. By the defini-
tion and (A.1)-(A.3), we also have, as in 3,
(4.1) ,x(x()) (J(’x)-- I)d(’) + (x()),
where (x) is an n-dimensional vector and
(4.2) (x()) L8 d(’ )II
a constant L8 being suitably chosen.

We observe that, by Lemma 3, AX(x()) is invertible for x() sufficiently
close to . Then, by (3.4),
(4.3) J()-I-(d2X(x()) Y2(x()))(dX(x()))-1.
Substituting (4.1) into (2.2) and using (4.3), it yields
(4.4) x( ) "x ,X(x())(AX(x())) [Y(x())

(zIX(x()))-ld(O,)_(x())].
n-1 k)Since [[D(x())[[gi__0 lid(’ [[, we have

and so, from (3.3), by (A.3) and (3.5),

for a constant L chosen suitably. In the above, we have used, under con-
ditions (A.1)-(A.3), the act that

for i-0, 1, 2, Hence, we obtain an estimate
(4.6) ]]x(+)--x]]gL,LT(LsL+L) x<>- 2,
from (4.4), by (4.5), (3.2), (3.6), (3.1) and (4.2). Therefore, (4.6) shows that
Theorem I holds with M=LTLg(LLs+Ls). In this way, we have pxoved
Theorem 1, as desired.

5. Numerical example. In order to show the efficiency of the
Steffensen iteration method (2.2), we consider a system of nonlinear equa-
tions, Example 5.1, which is a modification of [4, (A.82)]. The solution of
Example 5.1 using the Steffensen iteration method (2.2) is presented in
Table 5.1 below, together with the solutions by the iteration method [2,
(1.2)] and the Aitken-Steffensen formula [2, (1.5)].

Example 5.1. tx=f(X,x2 x2)= --(3x--3xx--6xx--61.488),
f2(x, x2)

50
(-x+6xx2+3x--32.496).

The solution is =(, )=(1.4, --1.0).

Table 5.1. Computation results or Example 5.1

Methods Solutions

Iteration method [2, (1.2)]
Aitken-Steffensen formula [2, (1.5)]
Steffensen iteration metho.d (2.2)

=(1.3999000, --0.9999053)
=(1.3999820, --0.9999861)
(1.3999920, 0.9999936)

x() =(0.0, 0.0)
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