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1. Introduction. In generalizing the Aitken ¢°-process in one dimen-
sion to the case of n-dimensions, Henrici [1, p. 116] has considered a
formula, which is called the Aitken-Steffensen formula. In [2], we have
studied the above Aitken-Steffensen formula for systems of nonlinear equa-
tions and shown [2, Theorem 2]. Moreover, in [38], we have considered a
method of iteration for the above systems, which is often called the
Steffensen iteration method, and shown [3, Theorem 1]. [3, Theorem 1]
improves the result of [2, Theorem 2].

We have given the proof of [3, Theorem 1], in which the Sherman-
Morrison-Woodbury formula [3, Lemma 4] is used only to determine
(£ X(x*))~*, but in this paper we show that the proof can be simplified
without using the formula. And we also present a numerical example in
order to show the efficiency of the Steffensen iteration method.

2. Statement of results. Let x=(x, x,, - - -, 2,) be a vector in B* and
D a region contained in R". Let f,(x) (1<i<n) be real-valued nonlinear
functions defined on D and f(x)=(f(®), fi(®), - - -, f.(x)) an n-dimensional
vector-valued function. Then we shall consider a system of nonlinear
equations
2.1 z= f(x),
whose solution is . Let [|«| and [|A| be denoted by

l]|=max|z,| and [A|=max 3, a,l
1gigsn 1sisn j=1

where A=(a,;) is an nXn matrix. Define f®(x)e R" ({=0,1,2, .--) by
SOx)=x,
f(i)(x)____f(f(i—l)(x)) (7;___1’ 2’ ce)

dOw =g 7
AR = fO(x®) —7 fori=1,2, .-,
and then define an n X n matrix D(x*®) by
D(x(k))___(d(o,k), d(l,k)’ e d=10),
Throughout this paper, we shall assume the following five conditions
(A.1)-(A.5) which are the same as those of [3].
(A1) f.(x) (1<i<n) are two times continuously differentiable on D.
(A.2) There exists a point € D satisfying (2.1).
(A.3) [[J(@)]|<1, where J(x)=(0f(2)/ox;) A<1, j<n).

Put
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(A.4) The vectors d®® d®® ... d"b9 k=0,1,2, ..., are linearly
independent.

(A.5) inf {|det D(x*)|/||d®*||"}>0.

Now, we consider Steffensen’s iteration method
2.2) 2D = 2® — AX ()L X (%)) (™),
where an n-dimensional vector 4x(x), and n X n matrices 4X(x) and 42X (x)
are given by

dx(2)= fO(@)— 2,
AX(@)=(fP@) =, - -, ™ (@)— f* ()
and
L£X(@)=(fP@)-2f @)+, - -, fOO(2) =2 (2)+ ().

In this paper, we also show the following

Theorem 1. Under conditions (A.1)-(A.5), there exists a constant M
such that an estimate of the form

D —z| <M ||a®—z|P
holds, provided that the x® generated by (2.2) are sufficiently close to the
solution % of (2.1).

3. Preliminaries. For the proof of Theorem 1, we need the follow-
ing three lemmas given in [3]:

Lemma 1 ([3, Lemma 1]). Let A and C be nXn matrices and assume
that A is invertible, with |A'|<K,. If ||A—C|<K, and K,K,<1, then C
18 also tnvertible, and |C~*||<K,/(1—K K,).

Lemma 2 ([3, Lemma 2]). Under conditions (A.1)-(A.5), there exists
a constant L, such that the inequality

[(D@®) Ly || 2|~
holds for x® sufficiently close to x.

Lemma 3 ([38, Lemma 3]). Under conditions (A.1)-(A.5), nXn ma-
trices AX(x®) and 42X (x®) are invertible, and there exist.constants L, and
L, such that the inequalities
3.1 [(AX (@) S Ly [P |,

(3.2) (X (@) S Ly [|d |
hold for x® sufficiently close to x.

Lemmas 1 and 2 are used in proving Lemma 3. By the definition, we
have
3.3) 4X(2®)=(J()—DD(x®)+ Y (x*),

3.4) LX(@®)=J () —DAX(x")+Y,(x*),
where Y,(z) and Y,(x) are n X n matrices. By (A.1)-(A.3), we may choose
constants L, and L, such that, for 2 sufficiently close to Z,
(3.5) 1Y ()| <L, || a2,
(3.6) [ Yo(x®) || < Ls || 2|
Here we note that the inequality (3.1) holds with L,=L,/L, by choosing a
constant L, so as to satisfy
1-||J(®)|—L,L, || d*" ||z L,>0.
Similarly we obtain the inequality (3.2) with L,=L,/L, by choosing a
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constant L, satisfying
1—(J@)||—L.Ls || d“* || = Ls>0.
4. Proof of Theorem 1. We shall prove Theorem 1. By the defini-
tion and (A.1)-(A.3), we also have, as in § 3,

@.1) 43(@®) = (@) — D"+ &),
where £(x) is an n-dimensional vector and
4.2) [E(@ )| Ly | AP,

a constant L, being suitably chosen.
We observe that, by Lemma 3, 4X(x®) is invertible for ™ sufficiently
close to z. Then, by (3.4),

(4.3) J(@)—I=(L4X(2®) =Y (x)NAX (™))"
Substituting (4.1) into (2.2) and using (4.8), it yields
“4.4) 2%+ — B = AX (@YWL X (20)) [V (™)

-(AX(2®))'dO® —&(x™)].
Since || D(z®)|| <> =2 ||d®® ||, we have

n—-1
|lD(x(k))”§<§) Mi) ECRIR

and so, from (3.3), by (A.3) and (3.5),
4.5) 4X(x™) <Ly || |
for a constant L, chosen suitably. In the above, we have used, under con-
ditions (A.1)-(A.3), the fact that

¢ t2I<M, ||de®) (0<M,<1)
for i=0,1,2, .-.. Hence, we obtain an estimate
(4.6) |2¥*D —B|| < LoLo(LyLiy 4 Lg) || 2 — T |,
from (4.4), by (4.5), (3.2), (3.6), (83.1) and (4.2). Therefore, (4.6) shows that
Theorem 1 holds with M =L,L,(L,L,+L,). In this way, we have proved
Theorem 1, as desired.

5. Numerical example. In order to show the efficiency of the
Steffensen iteration method (2.2), we consider a system of nonlinear equa-
tions, Example 5.1, which is a modification of [4, (A.82)]. The solution of
Example 5.1 using the Steffensen iteration method (2.2) is presented in
Table 5.1 below, together with the solutions by the iteration method [2,
(1.2)] and the Aitken-Steffensen formula [2, (1.5)].

@y = 1ty 29) = (32— 2, + 62,23+ 61.488),
60
Example 5.1. 1
&y = [y, x2)=36( — 23+ 623w, + 32— 32.496).
The solution is z=(&,, z,)=(1.4, —1.0).
Table 5.1. Computation results for Example 5.1

Methods Solutions
Iteration method [2, (1.2)] 262 =(1.3999000, —0.9999053)
Aitken-Steffensen formula [2, (1.5)] Y30 =(1.3999820, —0.9999861)
Steffensen iteration method (2.2) 2 =(1.3999920, —0.9999936)

x®=(0.0, 0.0)
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