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This paper continues the work begun in [6]. Therein we gave criteria
for real quadratic fields of narrow Richaud-Degert (R-D) type to have class
number one. This was a consequence of more general criteria given for
real quadratic fields Q(/-) with nl (mod 4).

Herein we will deal with positive square-free integers n of wide (R-D)
type i.e., n--m+r where r divides 4m and r e (-m, m] with Irl=l, 4. The
first result generalizes results in [1], [3], [4], [9] and [11].

Theorem 1. Let n=12-r7 be of wide R-D type such that nl (mod
4). If h(n)--1 then"

(1) Irl-=2.
(2) p is inert in Q(/-) for all odd primes p dividing 1.
(3) If r--2 then 1-----O (mod 3).
(4) If r 2 then O (mod 3).
Proof. Since nl (mod 4) then 2 is ramified in Q(/-). Therefore,

there are integers x and y such that x-ny-- _+2. By [5, Theorem 1.1]
2lrl; where [rl--2 since Ir[=/=l by hypothesis. This secures (1). If p is an
odd prime dividing such that p is not inert in Q(/-) then there are
integers u and v such that u--nv-- +_p. By [5, Theorem 1.2] n-7 and
p=3 are forced. This secures (2).

If 3 is not inert in Q(/-) then x-ny-- +_ 3 for some integers x and y.
Assume that x0 and that y0 is the least positive solution. Thus we
may invoke [7, Theorem 108-108a, pp. 205-207] to get that if x--ny--3
then for xl-- (2/2+ r)/I r and Yl-- 21/lrl (see [2] and [8])"

(i) O/y_yI/-//(X;-I)
and if x-ny 3 then"

(ii)
A tedious check shows that y-1.
Therefore x--n _+_3 i.e., x--l--r +__ 3. An easy check shows that the

only possible solutions to the latter equation occur when either l--r-2 or
1----3, and r-------2. Thus, if n6 when r=2, and n7 when r---2 then 3
is inert in Q(/) whence n=_2 (mod 3). Therefore, 1--0 (mod 3) if r=2,
and l0 (mod 3) if r---2. This secures (3), (4) and the theorem. Q.E.D.

Remark 1. The converse of Theorem 1 is false. For example, if
n 12 +2-- 146 then Theorem 1 (1)-(3) are satisfied, but h(n)-- 2.
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The following Table illustrates Theorem 1.

Table

r n h(n)

2
3
6

9
12
15
18

315
3
4

5
7
8
11
13

20

316

2
2
2
2
2
2
2
2

--2
--2
--2
--2
--2
--2
--2
--2

--2

6
11
38
83
146

227
326

99227

7
14
23

47
62

119
194
398

99854

1
1
1
1
2
1
3
18
1
1
1

1

1
2
2

1

21

All class numbers are taken from [10].
Theorem 2. Let n=l+r be of R-D type with r 12/, and n=_l (mod 4).

If h(n)--1 then"
(1) If n_---- 1 (mod 8) then n-- 33.
(2) If n=_5 (mod 8) then rO, --r is a prime and p is inert in Q(/W)

for all primes plrl/4.
Proof. If n--1 (mod 8) then 2 splits in Q(/W). Thus there are integers

a and b such that a-nb- +_ 8.
By [5, Theorem 1.1] IriS8. Also, using [7, Theorems 108-108a, pp.

205-207] we may achieve that b= 1 by the same reasoning as in the proof
of Theorem 1. Hence a-l=r+_8 where IriS_8. However, n----1 (mod 8)
and Irl=/=l, 4. Therefore, r e {--7, -3, 5}. An easy check of a-l=r+_8
for these values of r yields that the only solution is /=6 and r=-3; i.e.,
n-33.

Suppose that n5 (mod 8). If rl is not prime then there exists a prime
p dividing Irl such that 2plr[ and p is ramified in Q(/W). Therefore,
there are integers c and d with c--nd--+_4p;whence 4pIrl by [5,
Theorem 1.1]. Hence, Irl--2p, 3p or 4p. Either even case contradicts that
n5 (mod 8). For the Irl--3p case we note that it is well-known that if
h(n)=l then n=s or pq where s, p and q are primes such that either p=2
and q----3 (mod 4) or p----q3 (mod 4), (e.g., see [5]). Thus Irl--3p implies
that n is a product of more than two primes. Hence r is a prime. More-
over lrl----3 (mod 4) and (12+r)/Irl=_3 (mod 4) is prime. If r0 then 12----2r
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(mod 4) forcing r to be even, a contradiction. Thus r0.
If plrl/4 is a prime which is not inert in Q(/-), then there are

integers e and f such that e2-nf= +4p with Irl>4p. This contradicts [5,
Theorem 1.1]. This secures the theorem. Q.E.D.

Two examples which illustrate Theorem 2 (2) are n--141= 122--3 and
n= 1757---422- 7 for which h(n)-- 1.
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