79. On q-Additive Functions. I

By J.-L. Mauclaire*) and Leo Murata**)
(Communicated by Shokichi Iyanaga, m. J. A., June 14, 1983)

1. Let q be an arbitrary fixed natural number $\geqq 2$. Then a natural number n can be written in the unique way:

$$
n=\sum_{k=0}^{\infty} a_{k}(n) q^{k}, \quad 0 \leqslant a_{k}(n) \leqslant q-1 \quad(q \text {-adic expansion of } n) .
$$

We say that an arithmetic function $g(n)$ is q-additive, if

$$
\begin{equation*}
g(0)=0 \quad \text { and } \quad g(n)=\sum_{k=0}^{\infty} g\left(a_{k}(n) q^{k}\right) \tag{1}
\end{equation*}
$$

whenever $n=\sum_{k=0}^{\infty} a_{k}(n) q^{k}$ (cf. Gelfond [1]).***) The function "Sum of digits" $S_{q}(n)$ defined by $S_{q}(n)=\sum_{k=0}^{\infty} a_{k}(n)$, is a typical example of a q additive function.

Let $[x]$ denote the integral part of x, and $\zeta(s, r / q), 1 \leqslant r \leqslant q$ the Hurwitz zeta function defined by $\zeta(s, r / q)=\sum_{m=0}^{\infty}(m+r / q)^{-s}$ for $\operatorname{Re}(s)$ >1. We put
$\mathcal{A}=\{g(n): q$-additive function such that
\quad the convergence abscissa of $\left.\int_{1}^{\infty} g([t]) t^{-s-1} d t<\infty\right\}$,
$\mathscr{B}=\{H(z)$: Taylor series in z with positive radius of convergence $\}$.
In this article we give a result concerning a relation between \mathcal{A} and \mathscr{B}. Our theorem is:

Theorem. For q given functions $H_{r}(z) \in \mathscr{B}, 1 \leqslant r \leqslant q$, there exist a unique $g(n) \in \mathcal{A}$ and a unique $H(z) \in \mathscr{B}$ such that

$$
\begin{equation*}
\sum_{r=1}^{q} H_{r}\left(q^{-s}\right) \zeta\left(s, \frac{r}{q}\right)=s \cdot q^{s} \cdot \int_{1}^{\infty} g([t]) t^{-s-1} d t+q^{s-1} H\left(q^{-s}\right) \zeta(s) . \tag{2}
\end{equation*}
$$

Conversely, for a given $g(n) \in \mathcal{A}$ and an $H(z) \in \mathscr{B}$, there exists a unique system $H_{r}(z) \in \mathscr{B}, 1 \leqslant r \leqslant q$, which satisfies (2).

We intend to give, as an application of this result, an explicit summation formula $\sum_{n \leqslant x} g(n)$ for some q-additive functions, in a subsequent article.
2. The following lemma plays an important part in the proof of our Theorem.

[^0]Lemma (Functional equation involving a q-additive function). If $g(n) \in \mathcal{A}$, then

$$
s \cdot q^{s} \cdot \int_{1}^{\infty} g([t]) t^{-s-1} d t=\sum_{r=1}^{q-1}\left(\zeta\left(s, \frac{r}{q}\right)-\zeta\left(s, \frac{r+1}{q}\right)\right) f_{r}\left(q^{-s}\right),
$$

where $f_{r}(z)=\sum_{k=0}^{\infty} g\left(r q^{k}\right) z^{k} \in \mathscr{B}, 1 \leqslant r \leqslant q-1$.
We sketch the proof of Lemma. Here we only consider a q-additive function $g(n)$ satisfying $g(n)=O(n)$. Then the series in two variables, $\sum_{n=1}^{\infty} b^{g(n)} x^{n}$, converges in some neighbourhood of $(b, x)=(1,0)$, and is equal to

$$
\prod_{k=0}^{\infty}\left(1+\sum_{r=1}^{q-1} b^{\sigma\left(r q q^{k}\right.} x^{r q^{k}}\right)
$$

The equation

$$
\left\{\frac{\partial}{\partial b} \sum_{n=1}^{\infty} b^{g(n)} x^{n}\right\}_{b=1}=\left\{\frac{\partial}{\partial b}\left(\prod_{k=0}^{\infty}\left(1+\sum_{r=1}^{q-1} b^{g\left(r q^{k}\right)} x^{r q^{k}}\right)\right)\right\}_{b=1}
$$

gives

$$
\sum_{n=1}^{\infty}(g(n)-g(n-1)) x^{n}=\sum_{k=0}^{\infty}\left\{\frac{1-x^{q^{k}}}{1-x^{q^{k+1}}}\left(\sum_{r=1}^{q-1} g\left(r q^{k}\right) x^{r q^{k}}\right)\right\}, \quad|x| \leqslant 1 .
$$

We make here Mellin transform of both sides and have

$$
s \cdot \int_{1}^{\infty} g([t]) t^{-s-1} d t=\sum_{r=1}^{q-1}\left\{\zeta\left(s, \frac{r}{q}\right)-\zeta\left(s, \frac{r+1}{q}\right)\right\}\left(\sum_{k=0}^{\infty} g\left(r q^{k}\right) q^{-s(k+1)}\right) .
$$

Since $g(n) \in \mathcal{A}$, it is easily seen that the function $f_{r}(z)=\sum_{k=0}^{\infty} g\left(r q^{k}\right) z^{k}$ belongs to \mathscr{B}, and this proves our functional equation. For a q-additive function $g(n)$ such that $g(n) \neq O(n)$, we can prove our formula through making use of a q-additive function $\tilde{g}_{\alpha}(n)$ defined by

$$
\tilde{g}_{\alpha}\left(r q^{k}\right)=\left|g\left(r q^{k}\right)\right| q^{-\alpha k},
$$

where
$\alpha>\max _{1 \leqslant r \leqslant q-1}\{$ Real part of the absolute convergence

$$
\text { abscissa of } \left.\sum_{k=0}^{\infty} g\left(r q^{k}\right) q^{-s k}\right\} .
$$

3. Now we sketch the proof of our Theorem.
1°. It is sufficient to prove that, under the condition $\sum_{r=1}^{q} H_{r}(z)$ $=0$, there exists a unique $g(n) \in \mathcal{A}$ such that

$$
\sum_{r=1}^{q} H_{r}\left(q^{-s}\right) \zeta\left(s, \frac{r}{q}\right)=s \cdot q^{s} \cdot \int_{1}^{\infty} g([t]) t^{-s-1} d t .
$$

In fact, for a given $\left\{H_{r}(z)\right\}_{r=1}^{q}$, we put

$$
F(z)=\sum_{r=1}^{q} H_{r}(z) \quad \text { and } \quad \tilde{H}_{r}(z)=H_{r}(z)-\frac{1}{q} F(z)
$$

then $\left\{\tilde{H}_{r}(z)\right\}_{r=1}^{q}$ satisfy

$$
\sum_{r=1}^{q} \tilde{H}_{r}(z)=0, \quad \text { and } \quad \sum_{r=1}^{q}\left\{\frac{1}{q} F(z) \zeta\left(s, \frac{r}{q}\right)\right\}=q^{s-1} \zeta(s) F(z) .
$$

2°. Since $\sum_{r=1}^{q} H_{r}(z)=0$, we can transform the left-hand side of (2) into

$$
\sum_{r=1}^{q} H_{r}\left(q^{-s}\right) \zeta\left(s, \frac{r}{q}\right)=\sum_{r=1}^{q-1}\left(\zeta\left(s, \frac{r}{q}\right)-\zeta\left(s, \frac{r+1}{q}\right)\right) A_{r}\left(q^{-s}\right)
$$

where $A_{r}(z)=\sum_{i \leqslant r} H_{i}(z) \in \mathscr{B}$.
3°. For a given system $B_{r}(z) \in \mathscr{B}, 1 \leqslant r \leqslant q-1$, we write

$$
q^{-s} B_{r}\left(q^{-s}\right)=\sum_{k=0}^{\infty} b_{r}(k) q^{-s(k+1)}, \quad 1 \leqslant r \leqslant q-1,
$$

and put $f\left(r q^{k}\right)=b_{r}(k)$, for $1 \leqslant r \leqslant q-1, k \geqslant 0$, and these determine the q-additive function $f(n)$. From the condition $B_{r}(z) \in \mathscr{B}$ for any r, we can prove that $f(n) \in \mathcal{A}$. Then our Lemma shows that

$$
\begin{equation*}
s \cdot q^{s} \cdot \int_{1}^{\infty} f([t]) t^{-s-1} d t=\sum_{r=1}^{q-1}\left(\zeta\left(s, \frac{r}{q}\right)-\zeta\left(s, \frac{r+1}{q}\right)\right) B_{r}\left(q^{-s}\right), \tag{3}
\end{equation*}
$$

and the uniqueness of such $f(n)$ can be proved easily. Conversely, for a q-additive function $f(n) \in \mathcal{A}$, we can define the $q-1$ functions $B_{r}(z) \in \mathscr{B}, 1 \leqslant r \leqslant q-1$, by $B_{r}(z)=\sum_{k=0}^{\infty} f\left(r q^{k}\right) z^{k}$, which satisfy (3). So, by this one-to-one correspondence, we can find a unique q-additive function $g(n) \in \mathcal{A}$, for the system $\left\{A_{r}(z)\right\}_{r=1}^{q-1}$ which appeared in 2°, with the property

$$
s \cdot q^{s} \cdot \int_{1}^{\infty} g([t]) t^{-s-1} d t=\sum_{r=1}^{q} H_{r}\left(q^{-s}\right) \zeta\left(s, \frac{r}{q}\right) .
$$

4°. Proof of the converse. We start from a given $g(n) \in \mathcal{A}$ and a given $H(z) \in \mathscr{B}$, and put

$$
\left\{\begin{array}{l}
H_{1}(z)=f_{1}(z)-\frac{1}{q} H(z) \\
H_{r}(z)=f_{r}(z)-f_{r-1}(z)-\frac{1}{q} H(z), \quad 2 \leqslant r \leqslant q-1 \\
H_{q}(z)=-f_{q-1}(z)-\frac{1}{q} H(z)
\end{array}\right.
$$

where $f_{r}(z)=\sum_{k=0}^{\infty} g\left(r q^{k}\right) z^{k}, 1 \leqslant r \leqslant q-1$. Then these q functions $H_{r}(z)$, $1 \leqslant r \leqslant q$, satisfy (2) and every $H_{r}(z)$ is in \mathcal{B}. The uniqueness of the system $\left\{H_{r}(z)\right\}_{r=1}^{q}$ is verified easily and this proves our Theorem.

Reference

[1] A. O. Gelfond: Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arithmetica, 13, 259-265 (1967/68).

[^0]: *) C.N.R.S. and Waseda University.
 **) Meiji-gakuin University.
 ***) The values of g on the set $\left\{r q^{k}: 1 \leqslant r \leqslant q-1, k \in N\right\}$, determine completely the q-additive function $g(n)$.

