30. Singular Integrals on a Locally Compact Abelian Group with an Action of a Compact Group

By Köichi SAKA

Institute of Mathematics, Akita University

(Communicated by Kôsaku Yosida, m. j. a., March 12, 1982)

Let G be a semidirect product group of a closed normal abelian subgroup A and a compact subgroup K. An action of K on A is given by $k(a) = kak^{-1}$ for all $k \in K$ and $a \in A$. Let \hat{A} be the dual group of A. If $k \in K$ and $\gamma \in \hat{A}$, the equation that $\langle k(\gamma), a \rangle = \langle \gamma, k^{-1}(a) \rangle$ for all $a \in A$, defines an action of K on \hat{A} . If E is a finite dimensional vector space, then for $1 \leq p \leq \infty$, $L^{p}(A; E)$ will denote the Banach space of all L^{p} functions on A with values in E. Suppose (λ, E) is a finite dimensional unitary representation of K. A G-action $\tau(g)$ on $L^{p}(A; E)$ will be defined by $\tau(g)f(a') = \tau(ak)f(a') = \lambda(k)f(k^{-1}(a^{-1}a'))$ for all $a' \in A$ and all $g \in G$ with g = ak, $a \in A$, $k \in K$. The Fourier transform of f in $L^{1}(A; E)$ is defined by $\mathfrak{F}f(\gamma) = \int_{A} \langle \gamma, \overline{a} \rangle f(a) da$ for all $\gamma \in \hat{A}$. We give a definition of a polar decomposition (Σ, C) of A (cf. [3]). Let K_0 be a closed subgroup of K, and let C be a Borel subset of A whose elements are invariant under the action of K_0 . Let Σ be the homogeneous space K/K_0 . We say that (Σ, C) is a polar decomposition of A provided that

(a) for each r in C the stability group of r in K is precisely K_0 , and

(b) the mapping $(kK_0, r) \mapsto k(r)$ is a homeomorphism of $\Sigma \times C$ onto a Borel subset A_0 of A whose complement in A is of Haar measure zero in A. To avoid a trivial case we assume that the identity element e of A does not belong to A_0 throughout this paper.

Let \hat{K} be the set of all equivalence classes of irreducible unitary representations of K. For π in \hat{K} we denote by $d(\pi)$ the dimension of π and by $m(\pi)$ the multiplicity with which π occurs in $L^2(\Sigma)$. Le \tilde{K} be the subset of \hat{K} consisting of all elements with $m(\pi) \neq 0$. We set \tilde{K}_0 $= \tilde{K} - \{$ the trivial representation $\}$. Let (π, H_π) be an element of \tilde{K} and let $\{v_j^*\}_{j=1,\dots,d(\pi)}$ be a fixed orthonormal basis of H_π such that $\pi(k_0)v_j^\pi = v_j^\pi$, $j=1, \dots, m(\pi)$ for all k_0 in K_0 . We put $Y_{ij}^\pi(k) = \sqrt{d(\pi)}(v_i^\pi, \pi(k)v_j^\pi)$, $i=1,\dots, d(\pi), j=1,\dots, m(\pi)$. Then the set of functions $\{Y_{ij}^\pi: \pi \in \tilde{K}, i=1,\dots, d(\pi), j=1,\dots, m(\pi)\}$ is an orthonormal basis of $L^2(\Sigma)$. We call the functions Y_{ji}^π generalized spherical harmonics in $L^2(\Sigma)$. Throughout this paper we will use a fixed set of generalized spherical harmonics Y_{ij}^π and we assume that A and \hat{A} have polar decompositions (Σ, C) and (Σ, \tilde{C}) respectively. The following Theorems 1 and 2 can be proved by using a generalization of Theorem (3.10) in Coifman-Weiss [1, p. 40].

Theorem 1 (A generalized Bochner's theorem). For π in \tilde{K} , we consider a function f in $L^2(A)$ of the form $f(k(r)) = f_1(r)Y_{ns}^{\pi}(k)$, $k \in K$, $r \in C$ where f_1 is in $L^1(C)$. Then the Fourier transform of f is of the form

$$\mathfrak{F}f(k(\xi)) = \sum_{i=1}^{m(\pi)} f_i^*(\xi) Y_{ni}^{\pi}(k), \quad k \in K, \quad \xi \in \tilde{C}$$

where f_1^* is in $L^2(\tilde{C})$.

This theorem contains those of Gelbart [2] and Herz [4] in a special case.

Theorem 2 (A generalized Riesz transform I). Let (λ, E) be in \hat{K} and $\{u_j\}$ an orthonormal basis in E. Let (λ^*, E^*) be its contragredient representation and $\{u_j^*\}$ the dual basis of $\{u_j\}$. We consider a bounded linear operator T of $L^2(A)$ to $L^2(A; E^*)$. Then the operator T is invariant under the G-action if and only if there exists a set of functions $\{c_i\}_{i=1,\dots,m(\lambda)}$ in $L^{\infty}(\tilde{C})$ such that $\mathfrak{F}(Tf)(\gamma) = M(\gamma)\mathfrak{F}f(\gamma)$ for all $\gamma \in \hat{A}$ where $M(\gamma) = \sum_{j=1}^{m(\lambda)} M_j(\gamma)u_j^*$ and $M_m(k(\xi)) = \sum_{i=1}^{m(\lambda)} c_i(\xi)Y_{ji}^{\lambda}(k)$ for all $k \in K$ and $\xi \in \tilde{C}$. Moreover, if the above holds, then we have

$$\|c_i\|_{\infty} \leq \sqrt{d(\lambda)} \min_{1 \leq i \leq d(\lambda)} \|M_i\|_{\infty}.$$

From now we consider the case that A is an n-dimensional real vector space with an inner product and K is a compact Lie group which acts orthogonally on A and a polar decomposition (Σ, C) of A has the following additional conditions:

(c) C is a submanifold of A,

(d) the mapping $(kK_0, r) \mapsto k(r)$ of $\Sigma \times C$ onto A_0 is a diffeomorphism,

(e) A_0 is open and $a \in A_0$ implies $-a \in A_0$,

(f) if r is in C then tr is in C but -tr does not belong to C for all t>0.

We call a diffeomorphism $r \mapsto \delta(r)$ of C into GL(A) (the set of all invertible linear transformations of A) a system of dilations of A provided that

(a) $\delta(r)$ is symmetric with respect to the inner product of A for all r in C,

(b) for each r in C there exists an element r^{-1} in C such that $\delta(r^{-1})$ is the inverse transformation of $\delta(r)$,

(c) there exists an element 1 in C such that $\delta(1)$ is the identity transformation of A,

(d) det $\delta(r)$ is positive for all r in C and there exists a positive number ρ such that det $\tau(tr) = t^{\rho} \det \tau(r)$ for all t > 0 and all r in C,

(e) the subset $\{r \in C : \det \tau(r) = 1\}$ is compact in C.

110

We define a pseudo-norm |x| induced by the system of dilation $\delta(r)$ in the following way:

- (a) when x is in C, we set $|x| = |\det \tau(x)|^{1/\rho}$,
- (b) when x is in A_0 such that x = k(r), $k \in K$, $r \in C$, we set |x| = |r|.
- (c) when x does not belong to A_0 , we set |x|=0.

Theorem 3. Let (λ, E) be in \tilde{K}_0 and let (λ^*, E^*) , $\{u_j\}$ and $\{u_j^*\}$ be as in Theorem 2. Let $\Omega(x)$ be a function on A such that $\Omega(k(r)) = \sum_{j=1}^{d(\lambda)} Y_{jj}^{\lambda}(k) u_j^*$ for all k in K and r in C. We put

$$T_{\epsilon}f(x) = \int_{|y| \geq \epsilon} \frac{\Omega(y)}{|y|^n} f(x-y) dy, \qquad \varepsilon > 0.$$

Then, $Tf = \lim_{\epsilon \to 0} T_{\epsilon}f$ exists in L^{p} -norm (1 and the operator <math>Tis a bounded linear operator of $L^{p}(A)$ to $L^{p}(A; E^{*})$ which is invariant under the A-action. Moreover there exists a set of functions $\{c_{i_{1}}^{i}:$ $l=1, \dots, m(\lambda), i=1, \dots, m(\lambda)\}$ in $L^{\infty}(C)$ such that $\mathfrak{F}(Tf)(x) = M(x)\mathfrak{F}f(x)$ where $M = \sum_{j=1}^{d(\lambda)} M_{j_{i}}u_{j}^{*}$ and $M_{j_{i}}(k(r)) = \sum_{l=1}^{m(\lambda)} c_{i_{l}}^{i}(r)Y_{j_{l}}^{i}(k)$ for all $k \in K$ and $r \in C$ and there exists a constant B such that $\sup_{l,i} \|c_{i_{l}}^{i}\|_{\infty} \leq B\sqrt{d(\lambda)}$.

Theorem 4 (A generalized Riesz transform II). Let $(\lambda, E), (\lambda^*, E^*), \{u_j\}$ and $\{u_j^*\}$ be as in Theorem 3. Suppose that the system of dilations $\delta(r)$ satisfies that $\delta(r)k(1) = k(r)$ for all $r \in C$ and $k \in K$. Then a bounded linear operator $T: L^2(A) \rightarrow L^2(A; E^*)$ is G-action invariant and dilation invariant if and only if there exists a set of constants $\{c_i: i=1, \cdots, m(\lambda)\}$ such that $\mathfrak{F}(Tf)(x) = M(x)\mathfrak{F}f(x)$ and $M(k(r)) = \sum_{j=1}^{d(\lambda)} \sum_{i=1}^{m(\lambda)} c_i Y_{ji}^{\lambda}(k) u_j^*$ for all $k \in K$ and $r \in C$.

Theorem 5. For $1 \leq p \leq \infty$ and a nonnegative integer l, we denote by $W_p^l(A)$ the Sobolev space with the norm $||f||_{p,l}$. Let Y(x, k) be a function on $A \times \Sigma$ with $\int_{\Sigma} Y(x, k) dk = 0$ such that $Y(x, k) \in C^{\infty}(\Sigma)$ for each $x \in A$, and $D_k^{\alpha}Y(x, k) \in W_{\infty}^l(A)$ for all $k \in K$ and all K-invariant differential operator D_k^{α} on Σ of order α with $|\alpha| \leq h$ where h = 2([m/2]+1) ($m = \dim K$) and l is a fixed nonnegative integer. Let $\Omega(x, y)$ be a function on $A \times A$ such that $\Omega(x, k(r)) = Y(x, k)$ for all $x \in A$, all $k \in K$ and $r \in C$ and φ a function in $W_{\infty}^l(A)$. We define an operator T_* by

$$T_{\varepsilon}f(x) = \varphi(x)f(x) + \int_{|y| \ge \varepsilon} \frac{\Omega(x, y)}{|y|^n} f(x-y)dy, \qquad \varepsilon > 0.$$

We put $||Y||_l = \max_{0 \le |\alpha| \le h} \{ \sup_{k \in \Sigma} ||D_k^{\alpha}Y(x, k)||_{\infty, l} \}$ and $B = \max \{ ||\varphi||_{\infty, l},$ $||Y||_l \}$. Then for $1 , we have <math>||T_if||_{p,i} \le CB ||f||_{p,i}$ with a constant C for all integers $0 \le i \le l$, and $\lim_{\epsilon \to 0} T_{\epsilon}f = Tf$ exists in W_p^i -norm. The operator T also satisfies $||Tf||_{p,i} \le CB ||f||_{p,i}$ for all integers $0 \le i \le l$ with the same constant C.

Our case in this paper contains the Euclidean space case and the matrix space case ([2]-[4]) as examples. Details of result in this paper will appear elsewhere. I would like to thank Prof. S. Igari, M. Kaneko, A. Kodama and the referee for many valuable suggestions.

No. 3]

K. SAKA

References

- R. R. Coifman and G. Weiss: Analyse harmonique noncommutative sur certains espaces homogènes. Lect. Note in Math., vol. 242, Springer-Verlag, Heidelberg (1971).
- [2] S. Gelbert: A theory of Stiefel harmonics. Trans. Amer. Math. Soc., 192, 29-50 (1974).
- [3] K. I. Gross and R. A. Kunze: Bessel functions and representation theory I. J. Funct. Anal., 22, 73-105 (1976).
- [4] C. S. Herz: Bessel functions of matrix argument. Ann. Math., 61, 474-523 (1955).