30. Singular Integrals on a Locally Compact Abelian Group with an Action of a Compact Group

By Kōichi Saka
Institute of Mathematics, Akita University
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1982)

Let G be a semidirect product group of a closed normal abelian subgroup A and a compact subgroup K. An action of K on A is given by $k(a)=k a k^{-1}$ for all $k \in K$ and $a \in A$. Let \hat{A} be the dual group of A. If $k \in K$ and $\gamma \in \hat{A}$, the equation that $\langle k(\gamma), a\rangle=\left\langle\gamma, k^{-1}(a)\right\rangle$ for all $a \in A$, defines an action of K on \hat{A}. If E is a finite dimensional vector space, then for $1 \leqq p \leqq \infty, L^{p}(A ; E)$ will denote the Banach space of all L^{p} functions on A with values in E. Suppose (λ, E) is a finite dimensional unitary representation of K. A G-action $\tau(g)$ on $L^{p}(A ; E)$ will be defined by $\tau(g) f\left(a^{\prime}\right)=\tau(a k) f\left(\alpha^{\prime}\right)=\lambda(k) f\left(k^{-1}\left(\alpha^{-1} a^{\prime}\right)\right)$ for all $a^{\prime} \in A$ and all $g \in G$ with $g=a k, a \in A, k \in K$. The Fourier transform of f in $L^{1}(A ; E)$ is defined by $\mathfrak{\lessgtr} f(\gamma)=\int_{A}\langle\gamma, \bar{a}\rangle f(a) d a$ for all $\gamma \in \hat{A}$. We give a definition of a polar decomposition (Σ, C) of A (cf. [3]). Let K_{0} be a closed subgroup of K, and let C be a Borel subset of A whose elements are invariant under the action of K_{0}. Let Σ be the homogeneous space K / K_{0}. We say that (Σ, C) is a polar decomposition of A provided that
(a) for each r in C the stability group of r in K is precisely K_{0}, and
(b) the mapping ($k K_{0}, r$) $\mapsto k(r)$ is a homeomorphism of $\Sigma \times C$ onto a Borel subset A_{0} of A whose complement in A is of Haar measure zero in A. To avoid a trivial case we assume that the identity element e of A does not belong to A_{0} throughout this paper.

Let \hat{K} be the set of all equivalence classes of irreducible unitary representations of K. For π in \hat{K} we denote by $d(\pi)$ the dimension of π and by $m(\pi)$ the multiplicity with which π occurs in $L^{2}(\Sigma)$. Le \tilde{K} be the subset of \hat{K} consisting of all elements with $m(\pi) \neq 0$. We set \tilde{K}_{0} $=\tilde{K}-\left\{\right.$ the trivial representation\}. Let $\left(\pi, H_{\pi}\right)$ be an element of \tilde{K} and let $\left\{v_{j}^{\pi}\right\}_{j=1, \ldots, a(\pi)}$ be a fixed orthonormal basis of H_{π} such that $\pi\left(k_{0}\right) v_{j}^{\pi}=v_{j}^{\pi}$, $j=1, \cdots, m(\pi)$ for all k_{0} in K_{0}. We put $Y_{i j}^{\pi}(k)=\sqrt{d(\pi)}\left(v_{i}^{\pi}, \pi(k) v_{j}^{\pi}\right)$, $i=1, \cdots, d(\pi), j=1, \cdots, m(\pi)$. Then the set of functions $\left\{Y_{i j}^{\pi}: \pi \in \tilde{K}\right.$, $i=1, \cdots, d(\pi), j=1, \cdots, m(\pi)\}$ is an orthonormal basis of $L^{2}(\Sigma)$. We call the functions $Y_{j i}^{\pi}$ generalized spherical harmonics in $L^{2}(\Sigma)$. Throughout this paper we will use a fixed set of generalized spherical harmonics $Y_{i j}^{\pi}$ and we assume that A and \hat{A} have polar decompositions
(Σ, C) and (Σ, \tilde{C}) respectively. The following Theorems 1 and 2 can be proved by using a generalization of Theorem (3.10) in CoifmanWeiss [1, p. 40].

Theorem 1 (A generalized Bochner's theorem). For π in \tilde{K}, we consider a function f in $L^{2}(A)$ of the form $f(k(r))=f_{1}(r) Y_{n s}^{\pi}(k), k \in K$, $r \in C$ where f_{1} is in $L^{1}(C)$. Then the Fourier transform of f is of the form

$$
\mathfrak{F} f(k(\xi))=\sum_{i=1}^{m(\pi)} f_{i}^{*}(\xi) Y_{n i}^{\pi}(k), \quad k \in K, \quad \xi \in \tilde{C}
$$

where f_{1}^{*} is in $L^{2}(\tilde{C})$.
This theorem contains those of Gelbart [2] and Herz [4] in a special case.

Theorem 2 (A generalized Riesz transform I). Let (λ, E) be in \tilde{K} and $\left\{u_{j}\right\}$ an orthonormal basis in $E . \quad$ Let $\left(\lambda^{*}, E^{*}\right)$ be its contragredient representation and $\left\{u_{j}^{*}\right\}$ the dual basis of $\left\{u_{j}\right\}$. We consider a bounded linear operator T of $L^{2}(A)$ to $L^{2}\left(A ; E^{*}\right)$. Then the operator T is invariant under the G-action if and only if there exists a set of functions $\left\{c_{i}\right\}_{i=1, \ldots, m(\lambda)}$ in $L^{\infty}(\tilde{C})$ such that $\mathfrak{F}(T f)(\gamma)=M(\gamma) \mathfrak{F} f(\gamma)$ for all $\gamma \in \hat{A}$ where $M(\gamma)=\sum_{j=1}^{d(\lambda)} M_{j}(\gamma) u_{j}^{*}$ and $M_{m}(k(\xi))=\sum_{i=1}^{m(\lambda)} c_{i}(\xi) Y_{j i}^{\lambda}(k)$ for all $k \in K$ and $\xi \in \tilde{C}$. Moreover, if the above holds, then we have

$$
\left\|\boldsymbol{c}_{i}\right\|_{\infty} \leqq \sqrt{d(\lambda)} \min _{1 \leq j \leq d(\lambda)}\left\|M_{j}\right\|_{\infty} .
$$

From now we consider the case that A is an n-dimensional real vector space with an inner product and K is a compact Lie group which acts orthogonally on A and a polar decomposition (Σ, C) of A has the following additional conditions:
(c) C is a submanifold of A,
(d) the mapping $\left(k K_{0}, r\right) \mapsto k(r)$ of $\Sigma \times C$ onto A_{0} is a diffeomorphism,
(e) A_{0} is open and $a \in A_{0}$ implies $-a \in A_{0}$,
(f) if r is in C then $t r$ is in C but - $t r$ does not belong to C for all $t>0$.

We call a diffeomorphism $r \mapsto \delta(r)$ of C into $G L(A)$ (the set of all invertible linear transformations of A) a system of dilations of A provided that
(a) $\delta(r)$ is symmetric with respect to the inner product of A for all r in C,
(b) for each r in C there exists an element r^{-1} in C such that $\delta\left(r^{-1}\right)$ is the inverse transformation of $\delta(r)$,
(c) there exists an element 1 in C such that $\delta(1)$ is the identity transformation of A,
(d) $\operatorname{det} \delta(r)$ is positive for all r in C and there exists a positive number ρ such that $\operatorname{det} \tau(t r)=t^{\rho} \operatorname{det} \tau(r)$ for all $t>0$ and all r in C,
(e) the subset $\{r \in C: \operatorname{det} \tau(r)=1\}$ is compact in C.

We define a pseudo-norm $|x|$ induced by the system of dilation $\delta(r)$ in the following way:
(a) when x is in C, we set $|x|=|\operatorname{det} \tau(x)|^{1 / \rho}$,
(b) when x is in A_{0} such that $x=k(r), k \in K, r \in C$, we set $|x|=|r|$.
(c) when x does not belong to A_{0}, we set $|x|=0$.

Theorem 3. Let (λ, E) be in \tilde{K}_{0} and let $\left(\lambda^{*}, E^{*}\right),\left\{u_{j}\right\}$ and $\left\{u_{j}^{*}\right\}$ be as in Theorem 2. Let $\Omega(x)$ be a function on A such that $\Omega(k(r))$ $=\sum_{j=1}^{d(\lambda)} Y_{j i}^{2}(k) u_{j}^{*}$ for all k in K and r in C. We put

$$
T_{e} f(x)=\int_{|y| \geqq e} \frac{\Omega(y)}{|y|^{n}} f(x-y) d y, \quad \varepsilon>0 .
$$

Then, $T f=\lim _{s \rightarrow 0} T_{s} f$ exists in L^{p}-norm $(1<p<\infty)$ and the operator T is a bounded linear operator of $L^{p}(A)$ to $L^{p}\left(A ; E^{*}\right)$ which is invariant under the A-action. Moreover there exists a set of functions $\left\{c_{l i}^{\lambda}\right.$: $l=1, \cdots, m(\lambda), i=1, \cdots, m(\lambda)\}$ in $L^{\infty}(C)$ such that $\mathfrak{F}(T f)(x)=M(x) \mathfrak{\mho} f(x)$ where $M=\sum_{j=1}^{a(\lambda)} M_{j i} u_{j}^{*}$ and $M_{j i}(k(r))=\sum_{l=1}^{m(\lambda)} c_{i i}^{\lambda}(r) Y_{j l}^{\lambda}(k)$ for all $k \in K$ and $r \in C$ and there exists a constant B such that $\sup _{l, i}\left\|c_{i i}^{\lambda}\right\|_{\infty} \leqq B \sqrt{d(\lambda)}$.

Theorem 4 (A generalized Riesz transform II). Let $(\lambda, E),\left(\lambda^{*}, E^{*}\right)$, $\left\{u_{j}\right\}$ and $\left\{u_{j}^{*}\right\}$ be as in Theorem 3. Suppose that the system of dilations $\delta(r)$ satisfies that $\delta(r) k(1)=k(r)$ for all $r \in C$ and $k \in K$. Then a bounded linear operator $T: L^{2}(A) \rightarrow L^{2}\left(A ; E^{*}\right)$ is G-action invariant and dilation invariant if and only if there exists a set of constants $\left\{c_{i}: i=1, \cdots\right.$, $m(\lambda)\}$ such that $\mathfrak{F}(T f)(x)=M(x) \mathfrak{F} f(x)$ and $M(k(r))=\sum_{j=1}^{d(\lambda)} \sum_{i=1}^{m(\lambda)} c_{i} Y_{j i}^{\lambda}(k) u_{j}^{*}$ for all $k \in K$ and $r \in C$.

Theorem 5. For $1 \leqq p \leqq \infty$ and a nonnegative integer l, we denote by $W_{p}^{l}(A)$ the Sobolev space with the norm $\|f\|_{p, l}$. Let $Y(x, k)$ be a function on $A \times \Sigma$ with $\int_{\Sigma} Y(x, k) d k=0$ such that $Y(x, k) \in C^{\infty}(\Sigma)$ for each $x \in A$, and $D_{k}^{\alpha} Y(x, k) \in W_{\infty}^{l}(A)$ for all $k \in K$ and all K-invariant differential operator D_{k}^{α} on Σ of order α with $|\alpha| \leqq h$ where $h=2([m / 2]$ $+1)(m=\operatorname{dim} K)$ and l is a fixed nonnegative integer. Let $\Omega(x, y)$ be a function on $A \times A$ such that $\Omega(x, k(r))=Y(x, k)$ for all $x \in A$, all $k \in K$ and $r \in C$ and φ a function in $W_{\infty}^{l}(A)$. We define an operator T_{s} by

$$
T_{e} f(x)=\varphi(x) f(x)+\int_{|y| \geqq \bullet} \frac{\Omega(x, y)}{|y|^{n}} f(x-y) d y, \quad \varepsilon>0 .
$$

We put $\|Y\|_{l}=\max _{0 \leqq|\alpha| \leqq h}\left\{\sup _{k \in \Sigma}\left\|D_{k}^{\alpha} Y(x, k)\right\|_{\infty, l}\right\}$ and $B=\max \left\{\|\varphi\|_{\infty, l}\right.$, $\left.\|Y\|_{l}\right\}$. Then for $1<p<\infty$, we have $\left\|T_{s} f\right\|_{p, i} \leqq C B\|f\|_{p, i}$ with a constant C for all integers $0 \leqq i \leqq l$, and $\lim _{s \rightarrow 0} T_{s} f=T f$ exists in W_{p}^{i}-norm. The operator T also satisfies $\|T f\|_{p, i} \leqq C B\|f\|_{p, i}$ for all integers $0 \leqq i \leqq l$ with the same constant C.

Our case in this paper contains the Euclidean space case and the matrix space case ([2]-[4]) as examples. Details of result in this paper will appear elsewhere. I would like to thank Prof. S. Igari, M. Kaneko, A. Kodama and the referee for many valuable suggestions.

References

[1] R. R. Coifman and G. Weiss: Analyse harmonique noncommutative sur certains espaces homogènes. Lect. Note in Math., vol. 242, SpringerVerlag, Heidelberg (1971).
[2] S. Gelbert: A theory of Stiefel harmonics. Trans. Amer. Math. Soc., 192, 29-50 (1974).
[3] K. I. Gross and R. A. Kunze: Bessel functions and representation theory I. J. Funct. Anal., 22, 73-105 (1976).
[4] C. S. Herz: Bessel functions of matrix argument. Ann. Math., 61, 474-523 (1955).

