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1. Generally, a property of open Riemann surfaces is not always
preserved by a quasiconformal mapping. For example, the class O,
the class of Riemann surfaces on which there exists no non-constant
bounded analytic function, is not quasicomformally invariant (cf. [1],
[3]). In this paper, we shall study properties of Riemann surfaces
which are not preserved by quasiconformal mappings.

Let R,, R, be open Riemann surfaces and f: R,—R, be a quasicon-
formal mapping. The main purpose of this paper is to construct the
counter examples for the following problems.

I. Suppose that R, (j=1,2) are hyperbolic, that is, R, have
Green’s functions g, (-,p,) with poles at p,e R,. Are the Green’s
functions quasi-invariant? Precisely, dose the following inequality

9:(z, ) <Mg(f(2), f(p,)
hold for any point z on R, and a constant M(>0) not depending on z?

II. Suppose R, is in Widom class (cf. [5]), that is, R, is hyperbolic

and for each point p, € R,,

j B(t: P)AE< + oo,

where f(t: p,) is the first Betti number of {p e R,: g,(p, p0)>t}. Is R,
also in Widom class?

III. Let R, and R, be not in O,,. Suppose that R, is AB-separa-
ble, that is, for any points p, g € R, (p#¢q) there is a bounded analytic
function g such that g(p)£g(q). Is R, also AB-separable?

Finally in § 4, we shall give a theorem concerning with Problems
IT and III.

2. First of all, we recall the following proposition due to A.
Beurling and L. Ahlfors (cf. [1], [2]).

Proposition. There exists a quasiconformal automorphism of
the upper half plane with the boundary function h(x) (x e R) if and
only if
(1) Sl Mx+t)—h(x) <

= Mx)—h(x—1t) —
for some constant p=1 and for all x and t(50).
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Actually, of (1) is satisfied there exists a mapping whose maximal
dilatation<p*. For instance, this mapping is given by

~ - 1 Y 'T_h Y . _
(2) f(z)—Ey—j_yh(ans)dSHZy j (@ + ) — h(z—8))ds

with z=x-+1y, y>0 and a certain constant r,>0.

We consider a function Z(x)=x* on the real axis. It is easy to
show that n(x) satisfies (1) for some p. Hence (%) is the boundary
function of a quasiconformal mapping f defined by (2).

Since f(iy)=i¢hy3 /4, we can choose a sequence {¥,}; (¥,>0) such that
S Y,=-+o0 and —iYc, fiy,)<+oo. Composing f with a con-
formal mapping from the upper half plane onto the unit disk D, we
verify that there are a quasiconformal automorphism ¥ on D and a
sequence {z,};" (|2,]<<1) such that

(3) 2Iog|zn]=—-oo and i}log]F(zn)|>——oo.

Since —log|z| is the Green’s function of D with a pole at the
origin, this gives a counter example for Problem I.

Further, from (3) we have:

Corollary. The zeros of a bounded analytic function on D are
not preserved by a quasiconformal mapping.

3. To construct a counter example for Problems II and III, we
take a sequence {z,}; (0<z,<1, n=1,2, -..) satisfying the condition
). Put W=D —\s_,[%,_1, 22a], and we construct a two-sheeted cover-
ing surface R, from two copies W, W, of W, by identifying the upper
and the lower edges crosswise along (o, [2.,_1, 25.]. And we consider
a quasiconformal mapping F on R, whose projection is F' in §2. Put
F(R,)=R, and F-i= f, then R, is also a two-sheeted covering surface.

On the other hand, from (8) and a theorem of C. M. Stanton [4]
R, is in Widom class and AB-separable but R, is not in Widom class and
not AB-separable. Hence (R, R,, f) is a desired counter example for
Problems II and III.

4. For each t>0 we consider h(x)=x|2). Then h(x) satisfies
(1) for some p,, and we can take 1<p,<(v/ 2 +1)* (cf. [2, p. 133)).
Therefore, from Proposition in §2, we can find a sequence {f},., of
quasiconformal automorphisms of the upper half plane such that
lim, , K(f,)=1 where K(f,) is a maximal dilatation of f,. And f, is
defined by (2) with &, instead of % and with 7, instead of »,.

Then we have f,(iy)=iry'**/(2+t). Hence by the same argument
as in §§ 2 and 3, we have the following:

Theorem. There exist o sequence {R,},., of Riemann surfaces
and quasiconformal mappings f,: R—R, with lim, , K(f,)=1 such that
R, is not in Widom class and not AB-separable, but all R (t>0) are in
Widom class and AB-separable.
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