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1o Recently J. L. Dupont found out the connection between con-
tinuous cohomologies of semi-simple Lie groups and integrals of in-
variant forms over geodesic simplices in symmetric spaces ([5]). In
this note we shall study the analytic structure of analogous integrals
of rational forms over a simplex-like polyhedron which more or less
corresponds to an n-th iterated path, associated with (n+ 1) intersection
points of n-ple hyperplane sections in a polarized manifold. It will
be shown that these can be expressed by means of a finite sum of
iterated integrals of special 1-forms in the sense of K. T. Chen, which
can be regarded as a natural generalization of abelian integrals oa
projective algebraic varieties ([8]). The notion of periods of abelian
integrals will also be generalized as the part of corresponding "shuffle
structures" fixed by monodromy groups.

2. Let (V,E) be an n-dimensional polarized complex manifold.
Let IE be the complete linear system of Cartier divisors associated
with the line bundle E. We denote by h the dimension of H(V, ((E)).
Consider the space X=X consisting of sequences of m linearly in-
dependent sections s, s, ..., s of H(V, ((E)). X is isomorphic to
the Stief,, the space of sequences of m linearly independent vectors
in C. Let S, S.,..., S be m Cartier divisors in IEI, associated with
s,s,...,s, respectively. We shall call this a "configuration of
hyperplane sections" and the set of all them "configuration space of
hyperplane sections". This is parametrized by X.

Let W be an algebraic subset of V-of codimension 1 such that
V--W is affine if W is not empty. We denote by 9"(V, .W) the space
of rational forms on V with poles in W. Let S_,S_/,...,So be
(n+l) Cartier divisors in IEI such that S_,S_/,...,So and W are in
general position.

Definition 1. Let v, -nGiG0, be arbitrarypoiatsofS_S_+
V S,_ V S+ fS_ So. We consider a simplex-like n-
polyhedron A o class C disjoint from W, satisfying the ollowing
conditions" i) 3A,,,.,...,= [_) A,,,,,,...,, where A,,,,...,, denote A

ii,’" ,i}

S S. ii) zl_,...,_,/,...,o consists o the only one point v.
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This will be called a "fundamental simplex with the vertices v0, v,

By making use of the isotopy theorem due to R. Thorn, it can be
easily seen that such a A can be constructed rom lower dimensional
faces.

We consider the relative analytic space consisting of pairs (V
-W,S_+US_++,U...US0), (S_+,...,S0) eX, so that we have the
natural projection " X, with the fibre (V-W, S_+ U... U So). Let
Y be the subset o X such that becomes singular, namely the con-
figuration (S_+, ...,S0) and W are not in general position. Then
-+-(Y) is a topological fibre bundle over X--Y with the above fibre.

Now we are interested in the analytic structure of the integral

or e (V,.W).(i)

Lemma 1o ] being fixed, depends only on the homotopy class
of zl, provided that v, -n<_i<_O, are all.fixed. Namely let l(t),
1, be a continuous family of zl such that A,,...,(t)V,,...,=S,
S S and zl,,...,(t) are fixed. Then y is independent of t.
For the proo see, or example, [9].
We put =o_q_n- or the ordered sequence I=(i, i, ..., i)

where t0q denotes z 9q-i-l(Vz, .(W Vz)). When I is empty, we
denote tOo simply by . Let e be the canonical projection rom t onto. We can define boundary operators and on and , respec-
tively, as ollows"
( 2 ) (),,..., d(,,,...,)+ -],q__ (- 1)q-. ,...,_,,+,...,,

for =(,,,...,)0_ e
on each Vz. Then the following is commutative"

Then we have an extended de Rham complex (, d) with the nilpotent
covariant derivation c, associated with the configuration (S_,S_/,
.., So). We denote by C(V) the cell complex in Vz over C. Let C
(0__ , z C_z(Vz) be the chain complex with the boundary

operation"
( 4 )
in V or c=(c)e C.

We now define the natural pairing between and as ollows"

( 5 ) c>=
Then we have the Stokes formula"
( 6 ) <d?, c>= <?, c>.
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The integral cn be regarded s an element of Hn(, ), by taking as

= and =0 otherwise, z/itself becomes a cycle.
Proposition 1. Hn(, d) has a filtration F satisfying the fol-

lowing conditions" i) F=H*(,), ii) F F if I c J, and
iii) H-’(/, d) F H-(, d)/r
=H-’’(V-- W V, C).

We denote by H(X, @(,Y)) the space of rational vector fields on
X with poles only on Y. The

Proposition 2. For any r e H(X, (.Y)), the covariant differentia-
tion of the Gauss-Manin connection"

acting on z_r.H*(, ), satisfies
( 8 ) gO.FcO.F O.F.

This follows from the following

Lemma 2. Let V be an ane variety of dimension n embedded
in C+. Let fo, f, "’,f, be linearly independent linear functions on
C . Let be an n-polyhedron in V satisfying 0 {f, 0}.
We assume that each f depends holomorphically on t in an open
neighbourhood UC. Then

(9) d/dt = +=0 Of/Ot./df

for a holomorphic n-form on .
According to Proposition 1, there exists basis {e?), lvpz} of

H"-(Vz VG W, C) such that each {e?); lvp,JI} forms a basis
of H"-(z, z). Let Pz be a system of Zz linearly independent horizontal
solutions of the Guss-Munin connection Dz on H-t(z/
=H-t(V V W, C). Then there exists an integrable connection
form=(,) e (X, Y)@gl(z, C) such that
(10) DzP=dxP-wz. P=0.
According to Proposition 2 we have

(11) dx er) ’= }, e} " e)
with A(5,),(x, dx) e (X, .Y). Therefore by solving the differential
equation (11), we arrive at the ollowing

Theorem 1. For any sequence cIcIc..
.., 0}, the integral , being a linear combination of j" e), l grgo,

can be described as an element of the (X, .Y)-module generated by
the o’z. components of the matrix valued iterated integrals of the
following type"

(12) P(x) P;(x) Az(x, dx,) Pz(x) I PT(x) A,(x, dx)
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X. XnP.(xO PT_,(x). Az_,(Xn, dxn). P(x).

According o K. T. Chen’s 2ormula (see [4, p. 222]) we have
Corollary. The monodromy M, e u(X-- Y, .) preserves each F

eM.FF. Using the dual basis {e.} of the above { }, M can be
written in an explicit way"

" M .e(13) M(e,)=E,= (,), ,.
Therefore M is unipotent if and only if M(z,) are all the identities.

By taking a suitable finite covering X o X, we may assume that
M(,) and M(,)are the identities, o orders deg (V, E) and dim Hn(V
W, C), respectively. The fixed part Home (Hn(, d), C) o =(X
Y, .)-module Home (H(, ), C) contains H(V-- W, C) when V-W

is affine and contains the (n, 0)-part o H(V, C) when W is empty.
When n is equal to 1, this coincides with the usual periods system o
abelian integrals.. Under this situation the following questions seem
interesting" Do Ha(V--W, C) and the (n, O)-part of H(V, C) coincide
with Home (H(, ), C) when V-W are ane and empty respectively ?
Does the totality of elements of the matrices M(,)e Hom (Z[(X, .), R"".) generate Home (H(, ), C) ? It also seems interesting
to give any relation between Home (H(, ), C) and Griths inter-
mediate Jacobian (see [7]).. In this section we shall give important examples where M are
all unipotent. From now on we shall assume the Fu]ita A-genus
A(V, E) vanishes. Then it is known that (V, E) is isomorphic to a) the
complex projective space (CPn, H), b) the hyper-quadric (Q, H), c) the
tautological line bundle o an ample vector bundle over the projective
line and its base space, or d) (CP, H) where H denotes the hyperplane
bundle (see [6]). We shall take as W the union o Cartier divisors
S, S, ., S o ]E in general position. Then we have

Proposition . There exists a finite covering (X, Y) over (X, Y)
branched along Y such that
(14) V:.Fcz.F
for any e H(X, O(.Y)). M(z,z) all become the identities.

Actually g can be explicitely cmputed (see also [1]).
Definition 2. Consider the space B(9"(X, log (Y})) spanned by

iterated integrals on the path space (X-- Y, .) of X-- Y"

(15)

where e 9(X, log (Y). The elements of B depending only on
homotopy classes in (X-Y, .) will be called "hyper-logarithms of p-
th order" (see [2]).

Then Proposition 2 implies immediately the ollowing
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Theorem 2. If I(V,E)=O, then the integral can be described
as a finite sum of

(rational functions) (hyper-logarithms of at most n-th order)
on X with singularities only on Y.

In view of Lemma 2, Proposition 2 can be proved case by case,
by computing suitable bases o the cohomologies H II(Vz- Vz W, C).
(It is essential that all z/(V, E) vanish or E=EI.) In act, by using
a technique in [3], we have

Lemma . Case a) We put V’=V-S and W=V W. Then
W is the union of hyperplane sections S’f=O (lg]m-1) in gen-
eral position in V’=Cn. As is well known, H(V’- W’, C) has a basis
consisting of the logarithmic forms"

d logf,A. Ad logf.
Case b) Let V’ and W’ as above. Then W’ is the union of hyper-

plane sections S" f=O (lg]gm-1) in the hyperquadric V" x+x
+. +x=1 in C+. H(V-W, C) has a basis"

Opn, and {fo, f, ",f} , p=n,
f,f. .f f,f. .f,

with 1gi igm-1 and==o (- 1)" xdxA Adx_
A Adx, where {fo, f, ",f} denotes a non-zero linear function
g such that (g, 1)=(g,f,) (g,f)=0, and (a, b) denotes j=0
for a==ox++ and b =o flx+fl+ .

Case c) There exists a sequence of positive integers Z, Z, "",

such that V is embedded in CP-, h=g+g+...+g+n, by the
mapping

C CCP-
(Wo, w ,, ..., )(u,)
Wt-where u, .w.5. Let S+ be the divisor defined by Wo

in V which is in general position with respect to S, S, ..., S. Then
V’= V-S+ is isomorphic to C with the coordinates w/Wo=X,/
=x,...,5/=x. Let W’ be the union of hypersurfaces S’f=O
in V’, lg]gm, where f==a(x).x+(x), a(x) e C[x]. H(V
--W’, C) has a basis

x; dxAd logfAd logf Ad logf_,
[i, i, ..., i_]

1gi. i_gm, 0gagdeg [i, i, ., i_] 1 and

xl dx dx
f,. .f,

1gi...igin, 0gagdeg [i, i, ..., i]-1, where [i, i, ..., i_] and
[i, i, ..., i] denote the determinants
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0Itl,2

Oin_l,2 On_l,n

and
Otl,1 Oltl,n

respectively.
Case d) Let S/ be the line at infinity in CP, which is in general

position with respect to $1, S., ..., S. Let V’ be CP2-S/I=C Let
W’ be the union of S:f=0. Then H(V’- W’, C) has a basis

(x, xO dfAdf and dx/k dx.
ff f

where (x, x) e C[x, x] mod. the ideal (f, f).
The author would like to express his sincere gratitude to the re-

eree or many useul advices.
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