82. A Generalization of Poincaré Normal Functions on a Polarized Manifold

By Kazuhiko Aomoto
Department of Mathematics, Nagoya University
(Communicated by Kunihiko Kodaira, M. J. A., Nov. 12, 1979)

- 1. Recently J. L. Dupont found out the connection between continuous cohomologies of semi-simple Lie groups and integrals of invariant forms over geodesic simplices in symmetric spaces ([5]). In this note we shall study the analytic structure of analogous integrals of rational forms over a simplex-like polyhedron which more or less corresponds to an n-th iterated path, associated with (n+1) intersection points of n-ple hyperplane sections in a polarized manifold. It will be shown that these can be expressed by means of a finite sum of iterated integrals of special 1-forms in the sense of K. T. Chen, which can be regarded as a natural generalization of abelian integrals on projective algebraic varieties ([8]). The notion of periods of abelian integrals will also be generalized as the part of corresponding "shuffle structures" fixed by monodromy groups.
- 2. Let (V, E) be an n-dimensional polarized complex manifold. Let |E| be the complete linear system of Cartier divisors associated with the line bundle E. We denote by h the dimension of $H^{\circ}(V, \mathcal{O}_{v}(E))$. Consider the space $X = X_{m}$ consisting of sequences of m linearly independent sections $s_{1}, s_{2}, \dots, s_{m}$ of $H^{\circ}(V, \mathcal{O}_{v}(E))$. X_{m} is isomorphic to the Stief_{m,h}, the space of sequences of m linearly independent vectors in C^{h} . Let $S_{1}, S_{2}, \dots, S_{m}$ be m Cartier divisors in |E|, associated with $s_{1}, s_{2}, \dots, s_{m}$, respectively. We shall call this a "configuration of hyperplane sections" and the set of all them "configuration space of hyperplane sections". This is parametrized by X_{m} .

Let W be an algebraic subset of V of codimension 1 such that V-W is affine if W is not empty. We denote by $\Omega^{\bullet}(V,*W)$ the space of rational forms on V with poles in W. Let $S_{-n}, S_{-n+1}, \cdots, S_0$ be (n+1) Cartier divisors in |E| such that $S_{-n}, S_{-n+1}, \cdots, S_0$ and W are in general position.

Definition 1. Let $v_i, -n \leq i \leq 0$, be arbitrary points of $S_{-n} \cap S_{-n+1} \cap \cdots \cap S_{i-1} \cap S_{i+1} \cap \cdots \cap S_{-1} \cap S_0$. We consider a simplex-like n-polyhedron Δ of class C^1 disjoint from W, satisfying the following conditions: i) $\partial \Delta_{i_1,i_2,\ldots,i_p} = \bigcup_{j \in \{i_1,\ldots,i_p\}} \Delta_{j,i_1,i_2,\ldots,i_p}$ where $\Delta_{i_1,i_2,\ldots,i_p}$ denote $\Delta \cap S_{i_1} \cap \cdots \cap S_{i_p}$. ii) $\Delta_{-n,\ldots,i-1,i+1,\ldots,0}$ consists of the only one point v_i .

This will be called a "fundamental simplex with the vertices v_0, v_1, \dots, v_{-n} ".

By making use of the isotopy theorem due to R. Thom, it can be easily seen that such a Δ can be constructed from lower dimensional faces.

We consider the relative analytic space \mathfrak{X} consisting of pairs $(V-W,S_{-n}\cup S_{-n+1}\cup\cdots\cup S_0),\ \langle S_{-n},\cdots,S_0\rangle\in X,$ so that we have the natural projection $\pi\colon\mathfrak{X}\mapsto X,$ with the fibre $(V-W,S_{-n}\cup\cdots\cup S_0).$ Let Y be the subset of X such that π becomes singular, namely the configuration $\langle S_{-n},\cdots,S_0\rangle$ and W are not in general position. Then $\mathfrak{X}-\pi^{-1}(Y)$ is a topological fibre bundle over X-Y with the above fibre.

Now we are interested in the analytic structure of the integral

$$\tilde{\eta}\!=\!\!\int_{A}\eta,\qquad \text{for }\eta\in \varOmega^{n}(V,*W).$$

Lemma 1. η being fixed, $\tilde{\eta}$ depends only on the homotopy class of Δ , provided that v_i , $-n \leq i \leq 0$, are all fixed. Namely let $\Delta(t)$, $0 \leq t \leq 1$, be a continuous family of Δ such that $\Delta_{i_1,i_2,...,i_p}(t) \subset V_{i_1,i_2,...,i_p} = S_{i_1} \cap S_{i_2} \cap \cdots \cap S_{i_p}$ and $\Delta_{i_1,i_2,...,i_n}(t)$ are fixed. Then $\tilde{\eta}$ is independent of t. For the proof see, for example, [9].

We put $\hat{\Omega}_I = \bigoplus_{0 \leq q \leq n-p} \hat{\Omega}_I^q$ for the ordered sequence $I = (i_1, i_2, \cdots, i_p)$ where $\hat{\Omega}_I^q$ denotes $\bigoplus_{J \supset I} \Omega^{q-|J-I|}(V_J, *(W \cap V_J))$. When I is empty, we denote $\hat{\Omega}_{\phi}$ simply by $\hat{\Omega}$. Let ε_I be the canonical projection from $\hat{\Omega}$ onto $\hat{\Omega}_I$. We can define boundary operators \hat{d} and \hat{d}_I on $\hat{\Omega}$ and $\hat{\Omega}_I$, respectively, as follows:

on each V_{τ} . Then the following is commutative:

$$\begin{array}{c}
\hat{\mathcal{Q}} \xrightarrow{\hat{d}} \hat{\mathcal{Q}} \\
\downarrow^{\varepsilon_I} & \downarrow^{\varepsilon_I} \\
\hat{\mathcal{Q}}_I \xrightarrow{\hat{d}_I} \hat{\mathcal{Q}}_I
\end{array}$$

Then we have an extended de Rham complex (\hat{Q}, \hat{d}) with the nilpotent covariant derivation \hat{d} , associated with the configuration $\langle S_{-n}, S_{-n+1}, \dots, S_0 \rangle$. We denote by $C(V_I)$ the cell complex in V_I over C. Let $\hat{C} = \bigoplus_{0 \le p \le n} \hat{C}_p$, $\hat{C}_p = \bigoplus_I C_{p-|I|}(V_I)$ be the chain complex with the boundary operation:

(4)
$$(\hat{\partial}c)_{i_1,i_2,...,i_p} = c_{i_1,i_2,...,i_p} - \sum_{j \in \{i_1,i_2,...,i_p\}} c_{j,i_1,i_2,...,i_p} (-1)^p$$
 in V_I for $c = (c_I) \in \hat{C}_n$.

We now define the natural pairing between $\hat{\Omega}$ and \hat{C} as follows:

$$\langle \varphi, c \rangle = \sum_{I} \int_{c_{I}} \varphi_{I}.$$

Then we have the Stokes formula:

(6)
$$\langle \hat{d}\varphi, c \rangle = \langle \varphi, \hat{\partial}c \rangle.$$

The integral $\tilde{\eta}$ can be regarded as an element of $H^n(\hat{\Omega}, \hat{d})$, by taking as $\varphi_{\phi} = \eta$ and $\varphi_{I} = 0$ otherwise. Δ itself becomes a cycle.

Proposition 1. $H^n(\hat{\Omega}, \hat{d})$ has a filtration F_I satisfying the following conditions: i) $F_I = H^*(\hat{\Omega}_I, \hat{d}_I)$, ii) $F_I \supset F_J$ if $I \subset J$, and iii) $H^{n-|I|}(\hat{\Omega}_I/\sum_{J\supset I}\hat{\Omega}_J, \hat{d}_I) = F_I \cap H^{n-|I|}(\hat{\Omega}_I, \hat{d}_I)/\sum_{J\supset I}F_J \cap H^{n-|I|}(\hat{\Omega}_I, \hat{d}_I) = H^{n-|I|}(V_I - W \cap V_I, C)$.

We denote by $H^{\circ}(X, \Theta(*Y))$ the space of rational vector fields on X with poles only on Y. Then

Proposition 2. For any $\tau \in H^0(X, \Theta(*Y))$, the covariant differentiation ∇ of the Gauss-Manin connection:

(7)
$$\langle \tau, d_x \int_c \varphi \rangle = \int_c V_\tau \varphi$$

acting on $\mathcal{O}_{X-Y} \cdot H^*(\hat{\Omega}, \hat{d})$, satisfies

(8)
$$V_{\cdot}\mathcal{O}.F_{I} \subset \mathcal{O}.F_{I} \oplus \sum_{J \supseteq I} \mathcal{O}.F_{J}$$

This follows from the following

Lemma 2. Let V be an affine variety of dimension n embedded in C^{n+m} . Let f_0, f_1, \dots, f_n be linearly independent linear functions on C^{n+m} . Let Δ be an n-polyhedron in V satisfying $\partial \Delta = \bigcup_{i=0}^n \partial \Delta \cap \{f_i = 0\}$. We assume that each f_j depends holomorphically on t in an open neighbourhood $U \subset C$. Then

(9)
$$\frac{d}{dt} \int_{\mathcal{A}} \eta = \int_{\mathcal{A}} \frac{\partial \eta}{\partial t} + \sum_{j=0}^{n} \int_{\partial \mathcal{A} \cap \{f_j=0\}} \partial f_j / \partial t \cdot \eta / df_j$$

for a holomorphic n-form η on Δ .

According to Proposition 1, there exists a basis $\{e_I^{(\nu)}, 1 \leq \nu \leq \mu_I\}$ of $H^{n-|I|}(V_I - V_I \cap W, C)$ such that each $\{e_J^{(\nu)}; 1 \leq \nu \leq \mu_J, J \supset I\}$ forms a basis of $H^{n-|I|}(\hat{\Omega}_I, \hat{d}_I)$. Let P_I be a system of μ_I linearly independent horizontal solutions of the Gauss-Manin connection D_I on $H^{n-|I|}(\hat{\Omega}_I/\sum_{J\supset I}\hat{\Omega}_J, \hat{d}_I) = H^{n-|I|}(V_I - V_I \cap W, C)$. Then there exists an integrable connection form $\omega_I = (\omega_{I,s}^r) \in \Omega^1(X, *Y) \otimes gl(\mu_I, C)$ such that

$$(10) D_I P_I = d_X P_I - \omega_I \cdot P_I = 0.$$

According to Proposition 2 we have

(11)
$$d_{X} \int e_{I}^{(r)} - \sum_{s=1}^{\mu_{I}} \omega_{I,s}^{r} \int e_{I}^{s} = \sum_{J \supseteq I, s=1}^{\mu_{I}} A_{(I,J),s}^{r} \int e_{J}^{(s)}$$

with $A^r_{(I,J),s}(x,dx) \in \Omega^1(X,*Y)$. Therefore by solving the differential equation (11), we arrive at the following

Theorem 1. For any sequence $\phi \subset I_1 \subset I_2 \subset \cdots \subset I_n \subset \{-n, -n+1, \cdots, 0\}$, the integral $\tilde{\eta}$, being a linear combination of $\int e_{\phi}^{(r)}$, $1 \leq r \leq \mu_{\phi}$, can be described as an element of the $\Omega^0(X, *Y)$ -module generated by the $\mu_{\phi} \cdot \mu_{I_n}$ components of the matrix valued iterated integrals of the following type:

$$(12) \qquad P_{\phi}(x) \cdot \int^{x} P_{\phi}^{-1}(x_{1}) \cdot A_{\phi I_{1}}(x_{1}, dx_{1}) \cdot P_{I_{1}}(x_{1}) \cdot \int^{x_{1}} P_{I_{1}}^{-1}(x_{2}) \cdot A_{I_{1}, I_{2}}(x_{2}, dx_{2})$$

$$\times P_{I_2}(x_2) \cdot \int_{x_2}^{x_2} \cdots \int_{x_{n-1}}^{x_{n-1}} P_{I_{n-1}}^{-1}(x_n) \cdot A_{I_{n-1},I_n}(x_n, dx_n) \cdot P_{I_n}(x_n).$$

According to K. T. Chen's formula (see [4, p. 222]) we have

Corollary. The monodromy M_r , $\gamma \in \pi_1(X-Y,*)$ preserves each F_I : $M_r \cdot F_I \subset F_I$. Using the dual basis $\{e_{J,r}^*\}$ of the above $\{e_J^r\}$, M_r can be written in an explicit way:

(13)
$$M_r(e_{I,r}^*) = \sum_{J\supset I, s=1}^{\mu_J} M_{(J,I),r}^s \cdot e_{J,s}^*.$$

Therefore M_r is unipotent if and only if $M_{(J,J)}$ are all the identities.

By taking a suitable finite covering \tilde{X} of X, we may assume that $M_{(I_n,I_n)}$ and $M_{(\phi,\phi)}$ are the identities of orders $\deg(V,E)$ and $\dim H^n(V-W,C)$, respectively. The fixed part $\operatorname{Hom}_{\mathcal{C}}(H^n(\hat{\Omega},\hat{d}),C)^{\pi_1}$ of $\pi_1(X-Y,*)$ -module $\operatorname{Hom}_{\mathcal{C}}(H^n(\hat{\Omega},\hat{d}),C)$ contains $H_n(V-W,C)$ when V-W is affine and contains the (n,0)-part of $H_n(V,C)$ when W is empty. When n is equal to 1, this coincides with the usual periods system of abelian integrals. Under this situation the following questions seem interesting: $\operatorname{Do} H_n(V-W,C)$ and the (n,0)-part of $H_n(V,C)$ coincide with $\operatorname{Hom}_{\mathcal{C}}(H^n(\hat{\Omega},\hat{d}),C)^{\pi_1}$ when V-W are affine and empty respectively? Does the totality of elements of the matrices $M_{(I_n,\phi)} \in \operatorname{Hom}(Z[\pi_1(\tilde{X}-\tilde{Y},*),R^{\mu_{\phi}\mu_{I_n}})$ generate $\operatorname{Hom}_{\mathcal{C}}(H^n(\hat{\Omega},\hat{d}),C)^{\pi_1}$? It also seems interesting to give any relation between $\operatorname{Hom}_{\mathcal{C}}(H^n(\hat{\Omega},\hat{d}),C)^{\pi_1}$ and Griffiths intermediate Jacobian (see [7]).

3. In this section we shall give important examples where M_r are all unipotent. From now on we shall assume the Fujita Δ -genus $\Delta(V, E)$ vanishes. Then it is known that (V, E) is isomorphic to a) the complex projective space (CP^n, H) , b) the hyper-quadric (Q^n, H) , c) the tautological line bundle of an ample vector bundle over the projective line and its base space, or d) (CP^2, H^2) where H denotes the hyperplane bundle (see [6]). We shall take as W the union of Cartier divisors S_1, S_2, \dots, S_m of |E| in general position. Then we have

Proposition 3. There exists a finite covering (\tilde{X}, \tilde{Y}) over (X, Y) branched along Y such that

$$(14) V_{\tau} \mathcal{O}.F_{I} \subset \sum_{J \supseteq I} \mathcal{O}.F_{J}$$

for any $\tau \in H^{\circ}(X, \Theta(*Y))$. $M_{(J,J)}$ all become the identities.

Actually V_{τ} can be explicitely computed (see also [1]).

Definition 2. Consider the space $B^0(\Omega^{\bullet}(\tilde{X}, \log \langle \tilde{Y} \rangle))$ spanned by iterated integrals on the path space $\mathcal{L}(\tilde{X} - \hat{Y}, *)$ of $\tilde{X} - \tilde{Y}$:

$$\int \omega_{i_1}, \omega_{i_2}, \cdots, \omega_{i_p}$$

where $\omega_j \in \Omega^1(\tilde{X}, \log \langle \tilde{Y} \rangle)$. The elements of B° depending only on homotopy classes in $\mathcal{L}(\tilde{X}-\tilde{Y}, *)$ will be called "hyper-logarithms of p-th order" (see [2]).

Then Proposition 2 implies immediately the following

Theorem 2. If $\Delta(V, E) = 0$, then the integral $\tilde{\eta}$ can be described as a finite sum of

(rational functions)×(hyper-logarithms of at most n-th order) on \tilde{X} with singularities only on \tilde{Y} .

In view of Lemma 2, Proposition 2 can be proved case by case, by computing suitable bases of the cohomologies $H^{n-|I|}(V_I-V_I\cap W, C)$. (It is essential that all $\Delta(V_I, E_I)$ vanish for $E_I = E|_{V_I}$.) In fact, by using a technique in [3], we have

Lemma 3. Case a) We put $V' = V - S_m$ and $W' = V' \cap W$. Then W' is the union of hyperplane sections $S_j: f_j = 0$ $(1 \le j \le m-1)$ in general position in $V' = C^n$. As is well known, $H^n(V' - W', C)$ has a basis consisting of the logarithmic forms:

$$d \log f_{i_1} \wedge \cdots \wedge d \log f_{i_r}$$
.

Case b) Let V' and W' as above. Then W' is the union of hyperplane sections $S_j: f_j=0$ $(1 \le j \le m-1)$ in the hyperquadric $V': x_0^2+x_1^2+\cdots+x_n^2=1$ in C^{n+1} . $H^n(V'-W',C)$ has a basis:

$$\frac{\theta}{f_{i_1}f_{i_2}\cdots f_{i_p}}, \ 0 \leq p \leq n, \quad and \quad \frac{\{f_0, f_{i_1}, \dots, f_{i_n}\}^{\perp}}{f_{i_1}f_{i_2}\cdots f_{i_n}}\theta, \ p = n,$$

with $1 \le i_1 < \cdots < i_p \le m-1$ and $\theta = \sum_{j=0}^n (-1)^j \cdot x_j dx_1 \wedge \cdots \wedge dx_{j-1} \wedge dx_{j+1} \wedge \cdots \wedge dx_n$, where $\{f_0, f_{i_1}, \cdots, f_{i_n}\}^{\perp}$ denotes a non-zero linear function g such that $(g, 1) = (g, f_{i_1}) = \cdots = (g, f_{i_n}) = 0$, and (a, b) denotes $\sum_{j=0}^{n+1} \alpha_j \beta_j$ for $a = \sum_{j=0}^n \alpha_j x_j + \alpha_{n+1}$ and $b = \sum_{j=0}^n \beta_j x_j + \beta_{n+1}$.

Case c) There exists a sequence of positive integers $\mu_1, \mu_2, \dots, \mu_n$ such that V is embedded in CP^{h-1} , $h=\mu_1+\mu_2+\dots+\mu_n+n$, by the mapping

where $u_{j,k} = w_0^{g_j-k} \cdot w_1^k \cdot \zeta_j$. Let S_{m+1} be the divisor defined by $w_0 = \zeta_1 = 0$ in V which is in general position with respect to S_1, S_2, \dots, S_m . Then $V' = V - S_{m+1}$ is isomorphic to C^n with the coordinates $w_1/w_0 = x_1, \zeta_2/\zeta_1 = x_2, \dots, \zeta_n/\zeta_1 = x_n$. Let W' be the union of hypersurfaces $S_j : f_j = 0$ in V', $1 \le j \le m$, where $f_j = \sum_{k=2}^n \alpha_{jk}(x_1) \cdot x_k + \alpha_{j1}(x_1), \alpha_{jk}(x_1) \in C[x_1]$. $H^n(V' - W', C)$ has a basis

$$\frac{x_1^{\sigma}}{[i_1,i_2,\cdots,i_{n-1}]}dx_1 \wedge d\log f_{i_1} \wedge d\log f_{i_2} \wedge \cdots \wedge d\log f_{i_{n-1}},$$

$$1 \leq i_1 < \cdots < i_{n-1} \leq m, \ 0 \leq \sigma \leq \deg [i_1,i_2,\cdots,i_{n-1}]-1 \ and$$

$$x_1^{\sigma} \cdot \frac{dx_1 \wedge \cdots \wedge dx_n}{f_{i_1} \cdots f_{i_n}}$$

 $1 \leq i_1 < \cdots < i_n \leq m$, $0 \leq \sigma \leq \deg[i_1, i_2, \cdots, i_n] - 1$, where $[i_1, i_2, \cdots, i_{n-1}]$ and $[i_1, i_2, \cdots, i_n]$ denote the determinants

respectively.

Case d) Let S_{m+1} be the line at infinity in $\mathbb{C}P^2$, which is in general position with respect to S_1, S_2, \dots, S_m . Let V' be $\mathbb{C}P^2 - S_{m+1} = \mathbb{C}^2$ Let W' be the union of $S_j: f_j = 0$. Then $H^n(V' - W', \mathbb{C})$ has a basis

$$\varphi_{ij}(x_1, x_2) \frac{df_i \wedge df_j}{f_i f_j}$$
 and $\frac{dx_1 \wedge dx_2}{f_i}$

where $\varphi_{ij}(x_1, x_2) \in C[x_1, x_2] \mod$ the ideal (f_i, f_j) .

The author would like to express his sincere gratitude to the referee for many useful advices.

References

- [1] K. Aomoto: Addition theorem of Abel type for hyper-logarithms, I (preprint).
- [2] —: Fonctions hyper-logarithmiques et groupes de monodromie unipotents. J. Fac. Sci. Univ. Tokyo, 25, 149-156 (1978).
- [3] —: Les équations aux différences linéaires et les intégrales des fonctions multiformes. Ibid., 22, 271-297 (1975).
- [4] K. T. Chen: Iterated integrals of differential forms and loop space homology. Ann. of Math., 97, 217-246 (1973).
- [5] J. L. Dupont: Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology, **15**, 233-245 (1976).
- [6] T. Fujita: On the structure of polarized varieties with 4-genera zero. J. Fac. Sci. Univ. Tokyo, 22, 103-115 (1975).
- [7] Ph. Griffiths: Some transcendental methods in the study of algebraic cycles. Lect. Notes in Math., vol. 185, Springer pp. 1-46 (1970).
- [8] —: Variations on a Theorem of Abel, Invent. Math., 35, 321-390 (1976).
- [9] F. Pham: Introduction à l'étude topologique des singularités de Landau. Gauthiers Villars (1967).
- [10] B. Riemann: Vorlesungen über die hyper-geometrische Reihe. Gesammelte Matematische Werke, Nachträge, Dover, pp. 69-94 (1953).