No. 7] Proc. Japan Acad., 55, Ser. A (1979) 245

57. Convergence of Approximate Solutions to Quasi-Linear
Ewolution Equations in Banach Spaces

By Nobuhiro SANEKATA

Department of Mathematics, School of Education,
Okayama University

(Communicated by Kosaku Yosipa, M. J. A., Sept. 12, 1979)

1. Introduction. In this paper we consider the Cauchy problem
for the quasi-linear equation of evolution
Q) du(t) /dt+ A, u@)u(t)=0, a.e. tc[0,T], w0)=a,
under the following assumptions.

(X) X is a Banach space with norm | - |. There is another
Banach space Y, continuously and densely embedded in X. There is
an isomorphism S of Y onto X. The norm || - | in Y is chosen so

that S becomes an isometry.

(I) Foreachte[0,T,] and ye W,, —A(t, y) is the infinitesimal
generator of a (C,) semigroup {exp[—sA(t, Y1}z on X such that
llexp [—sA(t, y]|< e, where T, « and R are positive constants and
We={yeY:|y|-=R}.

(II) For each te[0,T,] and yc Wj, there is a bounded linear
operator B(t, ) on X into itself such that SA(t, ¥)S'=A(, ¥)+B(¢, v),
IB(t, ¥)||<2, where 1 is a positive number independent of ¢ e [0, T,]
and y e Wi.

(III) For each t<[0,7,] and ye W5, we have D(A(t, »)DY.
The restriction of A(¢, ¥) to Y (which is a bounded linear operator on
Y into X by the closed graph theorem) satisfies the following :

”A(ty y)_A(t9 Z) “Y,Xé/“ ”y_z”9 t € [0’ To]’ Y, z¢e WRy
where y is a positive constant and || - ||, x is the operator norm in the
Banach space of all bounded linear operators on Y into X.

(IV) ForeachyeWyand xeY, t—A(t, y)x is continuous in X.

Assumptions (I) and (II) imply that exp [—sA(t, WI(Y)CY and
the restriction of exp [—sA(t, )] to Y is a (C,) semigroup on Y such
that |exp [—sA&, )|y <e*, where 7 is a positive constant. See [1].
Assumption (IV) is somewhat weaker than the corresponding assump-
tion of [1]. It is assumed in [1] that t—A(¢, ) is continuous in || - ||, x-
norm.

Using the perturbation theory for the linear equation of evolution,
Kato [1] studied in detail the Cauchy problem for the quasi-linear
equation of evolution. The purpose of this note is to show another
approach to (Q). In §2, we construct approximate solutions to (Q)
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for some T ¢ (0, T,), and then we show the convergence of them. In
§ 3, we prove that the limit function obtained in § 2 is a unique solution
to (Q) if X is reflexive.

2. Construction and convergence of approximate solutions.
Let re (0, R) and let a € W,. We choose a positive number T such
that T'<min {T,, 8~'log R/r}, where f=max {a,7}. Let P={t,} be a
strictly increasing sequence in [0, T]. We define {z,} as follows:

To=0a, Ty =€xXP[—pp—tAC, 22, k=0,1, ...
Let t.=lim,_. t,. For each telt,t.) and se[t,t], we define linear
operator U(t, s) as follows:
U(t,s)=exp [— (E—t)AE, )] - -exp [—(E;,,— )AL, 2],

if t e [y, t,.,] and se[t,, ¢,,,]. By the method used in [2], we obtain
the following

Lemma 2.1. {,} converges in Y-norm as k—oo.

Proof. Let ¢, >t,>t,>t, andlet yeY. Then we have

% — 2, lly = Sa, — Sz, | < || S, —SU Ry, tIS ™'y ||

+ ST, tIS'y— U, L)Y+ || U, t)y— U(tj} t)y|
F UGy, t)y—SUR, 68y | +|SUE,, t)S-'y—Sa, |
=Il+Iz+Is+I4+Is~

Now, since z,=U(t,, t,)x, and z,=U(,, t,)x,, we have I,=|U(t,, t,)x,
— U, t)S Y|y <€’ ||Sw,—y| and I, <e’|Sz,—y|. I, is bounded
above by

k-1
Z' “ U(tp+1, ti)y— U(tp’ t¢)’!/||
b=y

=5 llexp [ (ty.i—t)ACt,, 2,01~ 110U, £y

k-1

tp+1—tp
_ j exp [—rA(,, z,)]AE,, ©,)U,, t)y dr

p=s11Jo
and since sup,,, ||A®, ¥) |y, x< oo, we have I, <C(E,—t) |y|ly. Next, we
put Alrl=A(¢,, x,) and Blrl=B(,,z,) if relt,t,., ], »p=0,1, ---.
Then we have

1= HI (@/dnISU(t,, HS-U(r, tt)y]d'rH

’

=[" 15U, N@ADIS—S=ABDUG, toy | dr
=" 18Ut NS BIIUG, toy] dr=Ct.—t) 1y,

and in the same way, we have I,<C(¢,—t)|y|. Thus we have
my ... |@—2, [y <C ||Se;—y||+ C(t.—t) |yll, for every i and yeY.
This implies that lim, .. ||z, —,[y=0. Q.E.D.

Lemma 2.2. For each ¢>0 and ae W,, there is a partition
P, a): 0=t,<t,<---<ty,=T, of [0, T] such that

(i) tk+l_tk§€’ k=0,1,.--,N,

(i) |[AE, x) — Ay, v)]lexp [— (@ — DA, xk)]xk” <e for t, ¢
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€ [tm tk+1], k:O, Tty Nu
where x,=a and x,,.,=exp [— (., —t)AE, v )]x,, k=0,1, ---,N,.
Proof. Inductively, we define {f,} and {x,} in the following
manner: Suppose that ¢, and x,;, /=0, - - -, k are constructed. Then
if t,<T, let t,,, be the largest number satisfying (i), (i) and ¢,,,<T,
and let x,,,=exp [—(ty, —t)A{, ©)]x,. Note that t¢,,,>t,. We
shall prove that there is an N such that t,=7. Assume, for the con-
trary, that ¢, <T for all k=0,1, ---. Let¢.=lim,_. ¢, and let we W,
be the limit point of {x,}. Then, for every ¢, t e [t,, t..], we have
M,.=||[A(t, 2,) — A, )] exp [— (' —t) A, x|
<A, 2)— AR, w)] exp [— @ — ) A, 212 ||
+I[A®, w)—A(ty, w)]l exp [— (' —E)AEe, )]s |
+ LA, w)— A, )] exp [— (@ =) AR, 2] ||
<2uR || @, —w |+ [AE, w)— A, w)] exp [— @ —t) AR, v,
and since lim,_., ||exp [— (' —t)A(t,, 2)]x,—w|y=0, we have lim,_., M,
=0. Therefore, for every ¢>0, there is a &k such that ¢,—t¢,<e and
M,<e. On the other hand, since ¢,.,, is the largest number satisfying
(i) and (ii), we have t,,,>t.,. This contradicts ¢,,,<¢... Q.E.D.
Let e=1/n and ae W,, and let P(1/n,a): 0=03<t7<- - - <t%,=T
be the partition of [0, T'] constructed by Lemma 2.2. We put z?=a,
vy, =exp [—(r. —tDAEE, v)la; and u,(t)=exp [—(E—tDAEL, )]y if
telts tr,], k=0,1,---,N,. Then we have
Proposition 2.3. {u,(t)} converges in X as n—>oo, uniformly in
t e [0, T].
Proof. Lette (£, t7, )N (", t7 ). Suppose thatt?>t". Then we
have
(d/dt) || u, (@) —u, @)}
= —2(A(;, 2w, () —u,@®), 1) —2((AE:, 20)—AEL, 27N, )
—2((Atz, 21— AR}, 2w, (), 1)
=28 |0 () —un(B) [P+ 2pR || — a7 || [0 (E) — @) |
+@/m) || U, (@) —un @],
where fe F(u,(t)—u,(t), F: X—-X* is the duality mapping (multi-
valued). The second term of the right hand side of the above inequality
is bounded above by
2pR (|23 — 1y )| 4[| %0 () — U (@) |+ [ (&) — 7] [|2,(8) — %, (B) ||
<CA/n+1/m) ||, (&) —u, (&) ||+ 2uR |, (t) —u, ([t |}.
Therefore, we have ||u,(t) —u,&) | CQA/n+1/m). Q.E.D.
3. Existence of a local solution. In this section, we assume
that X is reflexive. Then, since S is an isomorphism, Y is also
reflexive. Therefore, W, is closed in X. See [1, Lemma 7.3]. Now,
we shall prove the following
Theorem 3.1. Let u(t) be the limit function of {u,(t)} obtained
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by Proposition 2.3. Then u(t) is a unique solution to (Q) if X 1is
reflexive.

Strictly speaking, an X-valued function «(¢) on [0, T'] is called a
solution to (Q) if u(t) is strongly absolutely continuous, «(t) is strongly
differentiable at almost every te [0, Tl, w(t) e W, for almost every
te [0, T1 and u(t) satisfies (Q).

Proof of Theorem 3.1. We first note that u(t) e W5, because
u,t)e W and W, is closed in X. Furthermore, since (d/dt)u,(t)
=—At?, 2Mu,t), telty, tr,.] and sup,,, |AE Y.< oo, [(d/dE)u, )|
is uniformly bounded in ¢t € [0, T] and n. Therefore, u(t) is Lipschitz
continuous in £e[0, T] and w() is strongly differentiable at almost
every te[0,7T]. The uniqueness of the solution can be proved as
usual. Thus the following lemma leads to the conclusion of Theorem
3.1.

Lemma 3.2. If wu(t) is differentiable at se (0,T], then wu'(s)
= —A(s, u(s)u(s).

Proof. For every ye Y, we have

(d/dt) | u, () —y|F= —2(A,[E]u. (), 1)
<28[|u () — Y [P +2{— A,[t]y, u.(O) —vD,,
where f € F(u,(t)—v), {p, ©),=sup {(p, /): f e F(®}, p,qe X and A,[t]
=A(tr, xp) if telty, tr,,). Integrating each side of this inequality
from s to ¢t and then passing to the limit as n-—o0, we have
[|w(®) -y —[u(®)—y|*

<28 j ) —y | dr+2 j (=A@, u)y, u) =y, dr.

Therefore, since (u(t)—u(s), )< 1/2)(|u(t) —y|—|u(s)—y | for every
f e F(u(s)—y), we have
@' (s), =B |u®—y P+ (—A(s, u(9)y, 9),
for some g € F(u(s)—vy). See [3, Lemma 1]. On the other hand, since
u(s—h) =u(s) —huw'(s)+o(h) as k|0 and since A(s, u(s))+ 8 is m-
accretive in Y, there is a y,e Y such that (1+RA(s, u(s))y,=u(s)
—hw'(s)+o(h). Thus we have
(h=(u(8) — yn) — A(S, u(s)Yn+0(1), 9)
ZBlus) =y, P+ (—A(s, w($)Yn, 9),

for some g € F(u(s)—v,). This implies that |u(s)—y,||=0(k) as . | 0.
Thus we have y,—u(s) and A(s, w(s)y,——w(s) as h |0, and since
A(s, u(s)) is closed, we have —u/(s)=A(s, u(s))u(s). Q.E.D.
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