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1o Introduction. In this paper we consider the Cauchy problem
or the quasi-linear equation o evolution
(Q) du(t)/dt+A(t, u(t))u(t)=O, a.e. t e [0, T], u(0)=a,
under the ollowing assumptions.

(X) X is a Banach space with norm [l" [I. There is another
Banach space Y, continuously and densely embedded in X. There is
an isomorphism S of Y onto X. The norm I1" 1] in Y is chosen so
that S becomes an isometry.

( I ) For each t e [0, To] and y e W, -A(t, y) is the infinitesimal
generator of a (Co) semigroup {exp [-sA(t, Y)]}_0 on X such that
]lexp [--sA(t, y)]]lge"’, where To, a and R are positive constants and
W=(y e Y IlyII=R}.

(II) For each t e [0, To] and y e W, there is a bounded linear
operator B(t, y) on X into itsel such that SA(t, y)S-=A(t, y)+B(t, y),
liB(t, y)]l___<2, where 2 is. a positive number independent of t e [0, To]
and ye W.

(III) For each te[0, T0] and yews, we have D(A(t,y))Y.
The restriction of A(t, y) to Y (which is a bounded linear operator on
Y into X by the closed graph theorem) satisfies the following"

IIn(t, y)-n(t, z)ll,x=lu IlY--Zl], t e [0, To], y, z e W,
where g is a positive constant and 11" 11, is the operator norm in the
Banach space of all bounded linear operators on Y into X.

(IV) For each y e W and x Y, t-A(t, y)x is continuous in X.
Assumptions (I) and (II) imply that exp [-sA(t, y)](Y)c Y and

the restriction oi exp [-sA(t, y)] to Y is. a (Co) semigroup on Y such
that [[exp [-sA(t, y)]llr<=e’, where " is a positive constant. See [1].
Assumption (IV) is somewhat weaker than the corresponding assump-
tion of [1]. It is assumed in [1] that t-A(t, y) is continuous in [l" I[.x-
norm.

Using the perturbation theory for the linear equation of evolution,
Kato [1] studied in detail the Cauchy problem or the quasi-linear
equation of evolution. The purpose of this note is to show another
approach to (Q). In 2, we construct approximate solutions to (Q)
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or some T e (0, To), and then we show the convergence of them. In
3, we prove that the limit function obtained in 2 is a unique solution

to (Q) if X is reflexive.
2. Construction and converlence of approximate solutions.

Let r e (0, R) and let a e W. We choose a positive number T such
that T min {T0, - log R/r}, where max {, .}. Let P {t} be a
strictly increasing sequence in [0, T]. We define {x} as ollows"

Xo=a, x/=exp [--(t/--t)A(t,x)]x, k=0,1,
Let t=lim t. For each t e [to, t) and s e [to, t], we define linear
operator U(t, s) as follows"

U(t, s)=exp [-(t-t)A(t, x)]...exp [-(t/-s)A(t, x)],
if t e [t, t/] and s e [t, t/]. By the method used in [2], we obtain
the following

Lemma 2.1. {x} converges in Y-norm as k--oo.
Proof. Let ttt:>t0 and let y e Y. Then we have

+ ISU(t, t)S-y Y(t, t)Yll+l Y(t, t)y-Y(t,
+[I U(t, t)y-SU(t, t)S-yl[+llSU(t, t)S-y-Sxl[
I+L. q-I+I+I.

Now, since x= U(t, t)x and x= U(t, t)x, we have I= U(t, t)x
-U(t, t)S-ylrgerllSx-yll and I<=e Sx-y. I is bounded
above by

E U(t/, t)y-U(t,
p=j -- [exp [-(t/-t)A(t,x)]-l]U(t,

p=j

exp [--rA(t,, x,)]A(t,, x,)U(t,, t)y dr
p=j

and since sup, ]lA(t, y) r,x c, we have IGC(t-t)IlYlr. Next, we
put A[r]=A(t, x) and B[r]=B(t, x,) if r e [t,, t,+], p=0, 1,
Then we have

L.=III (d/dr)[SU(t, r)S-U(r, t)y]dr

<= IIsg(t, r)(A[r]S--S-A[r])U(r, t)yll dr
t

llSU(t, r)S-B[r]U(r, t)Yll dr<=C(t-t)
t

and in the same way, we have IGC(t-t) y]. Thus we have
lirn,llx-xlrGClISx,-y +C(t-t,) lYlI, for every i and ye Y.
This implies that liM, x-x r=0. Q.E.D.

Lemma 2.2. For each 0 and a e W, there is a partition
P(,a)" 0=t0t...t.=T, of [0, T] such that

(i) t+--t<=e, k=0, 1, ...,N,
(ii) [A(t, x) A(t, x)] exp [-- (t’ t)A(t, x)]x , for t, t’
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e [t, t+,], k=O, ...,N,,
where Xo--a and x+l--exp [--(t+-t)A(t, x)]x, k=O, 1, ., N,.

Proof. Inductively, we define {t} and (x} in the following
manner" Suppose that t# and x, ]--0, ..., k are constructed. Then
if tT, let t+ be the largest number satisfying (i), (ii) and t+T,
and let x+=exp[--(t+--t)A(t,x)]x. Note that t+lt. We
shall prove that there is an N such that t= T. Assume, for the con-
trary, that tT for all k=0, 1, Let t=lim t and let w e W
be the limit point of {x}. Then, for every t, t’ e [t, t], we have

M-- l[A(t, x)--A(t, x)] exp [-(t’--t)A(t, x)]x
[A (t, x)--n(t, w)] exp [-- (t’-- t)A(t, x)]x
+ [n(t, w)--A(t, w)] exp [-(t’--t)A(t, x)]xl
+ [A(t, w)--A(t, x)] exp [-(t’-t)A(t, x)]xll

2zR llx--wll+ll[A(t, w)--A(t, w)] exp [--(t’--t)A(t, x)]xl,
and since lim llexp [--(t’--t)A(t, x)]x-w It=0, we have lim Me
=0. Therefore, for every e0, there is a k such that t-t and

Mee. On the other hand, since t+ is the largest number satisfying
(i) and (ii), we have t+t. This contradicts t+t. Q.E.D.

Let =1In and a e W, and let P(1/n, a) 0=tt. t=T
be the partition of [0, T] constructed by Lemma 2.2. We put x=a,

tx+ exp[ (+ t)A(t,x)]xand u(t)exp[ (t t)A(t,x)]xi
t e [t, t+], k=0, 1, ...,N. Then we have

Proposition 2.. {u(t)} converges in X as n, uniformly in
t e [0, T].

Proof. Let t e (t, t+) (t?, t+). Suppose thattty. Then we
have

(d/dt) u(t)--u(t)
-2(A(t, x)(u(t)-u(t)), f)-2((A(t, x)-A(t, xy))uAt), f)
2((A(t, x?)--A(t?, xy))uAt), f)

2fl ]u(t)--u(t)+2R x-xy Un(t)--U(t)[]
+ (2/m)]lu(t)-u(t)l],

where f e F(u(t)--u(t)), F" XX* is the duality mapping (multi-
valued). The second term of the right hand side of the above inequality
is bounded above by

2zR [x--u(t)]+ Un(t)--u(t)] +[]u(t)--X?]] u(t)--u(t)[[
gC(1/n+ l/m)]]Un(t)--u(t)]+2zR u(t)--u(t)] .

Therefore, we have u(t)--u(t) C(1/n+ l/m). Q.E.D.. xistence of a local solution. In this section, we assume
that X is reflexive. Then, since S is an isomorphism, Y is also
reflexive. Therefore, W is closed in X. See [1, Lemma 7.3]. Now,
we shall prove the ollowing

Theorem .1. Let u(t) be the limit function of {Un(t)} obtained
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by Proposition 2.3. Then u(t) is a unique solution to (Q) if X is

reflexive.
Strictly speaking, an X-valued 2unction u(t) on [0, T] is called a

solution to (Q) if u(t) is strongly absolutely continuous, u(t) is strongly
differentiable at almost every t e [0, T], u(t)e W for almost every
t e [0, T] and u(t) satisfies (Q).

Proof of Theorem 3.1. We first note that u(t)e W, because
u(t) e W and W is closed in X. Furt’hermore, since (d/dt)u(t)

--A(t, x)u(t), t e [t, t+] and suPt,v IIA(t, y)[[r,x< c, [[(d/dt)u(t)[[
is uniformly bounded in t e [0, T] and n. Therefore, u(t) is Lipschitz
continuous in t e [0, T] and u(t) is strongly differentiable at almost
every t e [0, T]. The uniqueness of the solution can be proved as
usual. Thus the following lemma leads to the conclusion of Theorem
3.1.

Lemma 3.2. If u(t) is differentiable at s e (0, T], then u’(s)
A(s, u(s))u(s).
Proof. For every y e Y, we have

(d/dt) I]u(t)-y = -2(A[t]u(t), f)
<=2fl l]u(t)- yll+2(-A,[t]y, u(t)- y},

where y e F(u(t)-y), (p, q}= sup {(p, f)’ f e F(q)}, p, q e X and A[t]
=A(t, x) if t e [t, t/). Integrating each side of this inequality
from s to t and then passing to the limit as. n--, we have

u(t) y u(s) y

.[: u(r) y dr+2 .[: ( A(r, u(r))y, u(r) y} dr.=2
Therefore, since (u(t)--u(s), f)<= (1/2)(llu(t)- yll--Ilu(s)- yll) for every

f e F(u(s)--y), we have
(u’(s), g)=fl lu(s)- y +(-A(s, u(s))y, g),

for some g e F(u(s)-y). See [3, Lemma 1]. On the other hand, since
u(s--h) u(s)- hu’(s) / o(h) as h 0 and s.ince A(s, u(s)) + fl is m-
accretive in Y, there is a y e Y such that (l+hA(s,u(s)))y=-u(s)

hu’(s) + o(h). Thus we have
(h-(u(s) y)--A(s, u(s))y+ o(1), g)

<= fl u(s) y / (--A(s, u(s))y, g)
or some g e F(u(s)-y). This implies that u(s)-y o(h) as h $ 0.
Thus we have y--+u(s) nd A(s,u(s))y--u(s) as. h $ 0, and since

A(s, u(s)) is closed, we hve -u’(s)=A(s, u(s))u(s). Q.E.D.
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