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26. Tychonoff Functor and Product Spaces

By Shinpei OKa
Shizuoka University

(Communicated by Kosaku YOSIDA, M. J. A., April 12, 1978)

1. Introduction. In this paper a space means a topological space
with no separation axiom unless otherwise specified. We use the term
“Tychonoff functor” in the sense of K. Morita [2] and denote it by =
which is the epi-reflective functor from the category of all spaces and
continuous maps onto the category of all Tychonoff spaces and continu-
ous maps.

For any spaces X and Y, we denote by fx,» the unique continuous
map from (X X Y) onto 7(X) x (YY) which makes the following diagram
commutative, where the symbol @ follows [2].

Xx Y20 LX) x 2(Y)
Pxxy fxv
(X XY)

The equality (X X Y)=1(X) X z(Y) means that f, is a homeomor-
phism. Concerning this equality, the following theorems are known.

Theorem 1 (K. Morita). (X xXY)=7(X)Xz(Y) is valid if and only
if every cozero set of X XY can be expressed as the union of rectangular
cozero sets of XxY.

A subset V of X xY is called a rectangular cozero set if it is ex-
pressed as V=V, x Vy, where V, and V are cozero sets of X and Y
respectively.

Theorem 2 (R. Pupier [3]). If X is a locally compact Hausdorff
space, then t(X xXY)=X x¢(Y) is valid for any space Y.

The purpose of this paper is to show that the converse of Theorem
2 ig valid in case X is a Tychonoff space. More generally, we can prove
the following theorem.

Theorem 3. Let X be a space. If =(X) is not locally compact,
then there exists a Hausdorff space Y such that t(X X Y)#c(X) X z(Y).

Combining Theorem 3 with Theorem 2, we have the following
theorem.

Theorem 4. Let X be a Tychonoff space. Then the following
conditions are equivalent.

A1) X 1is locally compact.

2) (XxY)=Xx7(Y) for any space Y.

2. Preliminaries. Hereafter the symbol N denotes the set of all
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positive integers.

In this section we shall prove the following lemma which is needed
to prove Theorem 3.

Lemma 5. Let X be a Tychonoff space and C a non-compact closed
subset of X. Then there exist a (Hausdorff) space Y, a point y, of Y
and a continuous function h: X X Y—[0, 1] which satisfy the following
conditions.

1) vy, is not an isolated point of Y.

(@) h(@)=1 for ze X X{y,}.

@) RONCx{yD+~¢ for each y e Y —{y,}.

(In particular the projection py from X XY onto Y is not a Z-mapping
in the sense of Z. Frolik [1].)

Proof. Since C is a non-compact closed subset of a Tychonoff
space X, there exists a collection {E,: g € B} of zero sets of X satisfy-
ing the condition that N{E,: fe B}=¢ and (N{E,: feyhNC+¢ for
each finite subset y of B. Let us denote by I" the set of all finite sub-

sets of B, and put F,=N{E,: ey} for each yeI'. Then we define a
space Y as follows:

Y=U{N,:reI'tU{ys}
where N,=N for each y ¢ I', with the topology such that

(i) Each point of U{N,: y € I'} is isolated.

(ii) The point ¥, has an open nbd(=neighbourhood) base of the
form {U{Ni:oel, yCo}U{y}:2eN, rel}, where Ni={i,1+1,1+2,
--.}CN,. Then, clearly, ¥, is not an isolated point of Y. ‘

To construct the function h, we take, for each g e B, a countable
collection {G%:ie N} of cozero sets of X and a countable collection
{Kj: i e N} of zero sets of X such that

GiDKiDGH DK for each ie N,

N {Gi:ie N}=N{Ki:ie N}=E,.
Let us put Gi=N\{G%: ey} and Ki=\ {K:: ey} for each yeI" and
1€ N. Then G is a cozero set of X and K? is a zero set of X such that

GIDK:!DGi*'DKi**  foreachieN,

N {Gi:te N}=N{Ki:ie N}=F,.
Here we can find, for each y € I" and i € N, a continuous function Ai: X
—[0,1] such that ri(x)=1 for x ¢ X—Gi and hi(x)=0 for x ¢ K;. Let
us now define a function #: X X Y—[0, 1] as follows:

h(z)=1 for z € X X {y,}
@) =hi(z) for yel',ie N, and z € X X {i}.

Then it is easily shown that % is a continuous function satisfying the
required properties. Thus we complete the proof of Lemma 5.

3. Proof of Theorem 3. We first prove the following theorem.

Theorem 3’. Let X be a Tychonoff space. If X is not locally com-
pact, then there exists a Hausdorff space Y such that t(X X Y)#=X X z(Y).
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Proof. Let X be a Tychonoff space which is not lolally compact,
and «, a point of X which has no compact nbd. Let us fix some open
nbd base {U,: « € A} at x,, and define a space Y, as follows:

Y,=U {pJUN,: e A}U{p},
where N,=N for each a« ¢ A, with the topology such that
(1) Each point of U{N,: a € A} is isolated.
(2) The point p has as open nbd base of the form
{U{N,:ac AYU{p}: A/CA,|A—-A"|<R}

(@) The point p, (®e A) has an open nbd base of the form
{{p.}UNi: je N}, where Ni={j,j+1, ..-}CN,. The space Y, is Haus-
dorff and satisfies the following condition.

(x) Each cozero set V of Y, with p ¢ V satisfies the inequality

HeeA:p,eY,—V}H<NR,.

On the other hand, since each U, is a non-compact closed subset of
X, there exist, by Lemma 5, a Hausforff space Y, a point y, of Y, and
a continuous function h,: X xY,—[0,1] which satisfy the following
conditions.

1), v, is not an isolated point of Y.

2), h(2)=1for ze X x{y.}.

3). hO)NU,x{yh+¢ for each y e Y, —{v.}.

By identifying the point p, of Y, with the point y, of Y, for each a € 4,
we have a quotient space Y and a quotient map ¢q: Y ®(@{Y,: a € A}
—Y, where the symbol @ means the topological sum.
To prove that (X X Y)# X X z(Y), let us define a continuous function
f: XxY—[0,1] as follows:
f(@=1 for ze X x q(Y,)
F@R)=h,o(Axyxq)(z) forze Xxq(¥,) and ec 4,
where ¢, is the restriction of ¢ to Y,.

Suppose that there exists a rectangular cozero set V=V X Vy of
X x Y such that (z,, ¢(p)) e VC f-%([0,1]). Then, by condition (x), we
have [{e A: q(»,) e Y—Vy}|<W, Let us put A;={acA:q®,)eVy}
Then, by (1), and (3),, we have U,—Vy+#¢ for each ac A, Since
|A—A,|<3R, this implies that x, is an isolated point of X, which is a
contradiction. Thus, according to Theorem 1, we complete the proof
of Theorem 38’.

Theorem 3 is a direct consequence of Theorem 3’. (Notice that
the image of a cozero set of X by @ is also a cozero set of (X)).

Remark. In [3], R. Pupier has proved the following theorem
which is a partial converse to Theorem 3: If z(X) is locally compact,
then t(X X Y)=1(X) X «(Y) is valid for any k-space Y.
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