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In this short note we shall discuss, some properties of non-
commutative multiplication rings, especially non-idempotent multipli-
cation rings. Commutative multiplication rings were studied by
S. Mori in [3], [4], and also in his earlier works.. We denote AB if
A is a subset of B, and by AB if A is a proper subset of B. We do
not assume the existence of the identity, and "ideal" means, a two-
sided ideal.

1. Multiplication rings. Definition. A ring R is called a mul-
tiplication ring or briefly M-ring, if for any ideal , 5 such that
there exist ideals c, c’ such that

Proposition 1. Let R be an M-ring, let p be a proper prime ideal,
and let q be any ideal properly containing p, then

Proof. Since pq, there exist ideals 5,5’ such that
therefore p5. On the other hand qS0 (mod p), q0 (mod p), implies
50 (mod p), hence 0=5, and similarly

Proposition 2. Let R be an M-ring, and let p, p be prime ideals
such that p P2 and P2 Pl, then

Proof. Since p p, p(p, p), therefore by Proposition 1
:P(Pl, P)=(PP, P). If pp=p, then we have pp, which contradicts
our assumptions, therefore pp p, hence there exists an ideal c such
that ppp:pc, and p0 (mod p), therefore c-0 (mod p). Thus we
have ppppz. In a similar way we have pppp, therefore

Theorem 1. Let R be an M-ring, then the multiplication of prime
ideals is commutative.

Proof. Let 01, P be prime ideals of R. If pp, then by Propo-
sition 1 p=pp=pp, pp implies the same results.. If pp and
pp, then by Proposition 2

2. Non.idempotent M-ring. Definition. An M-ring R such that
R R is called a non-idempotent M-ring.

Theorem 2. Let R be non-idempotent M-ring, and let a be an
ideal of R, then a=R for some positive integer p or

Proof. Let a be an ideal such that a R" for any positive integer
p, then there exists n such that aR, for example n=l, therefore
a=R% or some ideal 5. Then a=R%RR=Rn+, and by our as-



280 T. UKEGAWA [Vol. 54 (A),

sumption aR/’. Thus for any integer m>_n, we have aR, there-
fore a(__R.

RRemark. From now on, we denote (:= R by b (-=
Proposition :. Let R be a non-idempotent M-ring, then Rb

=bR--b.
Proof. Since R Rb there exists an ideal b’ such that b =Rb’,

and by Theorem 2 b’b or b’=R for some positive integer k. If
b’b, then b--b’, therefore b--Rb i b=R, then b=Rb--RR=R+,
hence bRb=R+___b, therefore b=Rb.

Proposition 4. Let R be a non-idempoten$ M-ring, and let N be
the Jacobson radical of R, then N=R or Nb.

Proof. Let N b, then by Theorem 2 N--R or some positive in-

refer p. Since the Jacobson radical of R/N=R is {0}, and R is
nilpotent, it follows p= 1.

Proposition 5. Let R be a non-idempotent M-ring, a any ideal
contained in b, then Ra--aR--a.

Proof. Let ba, then there exists idealsS, ’ such that
Hence by Proposition 3 Ra--R(bS)--(Rb)5--bS--a.

Lemma 6. Let R be a non-idempotent M-ring and RRn+l for
any positive integer n, then hi--(-= R i8 a prime ideal of R.

Proof. I aS_=0 (modb) and a0, 50 (modb) or some ideals
a, 5, then by Theorem 2 a=R, 5--R or some positive integer p,
hence we have aS--R"+0 (rood b).

Remark. From now on, we denote the ideal denoted by b by b.
Theorem 3. Let R be a non-idempotent M-ring. We set b0--R,

b_, i 1 2, ., and assume that there exists a positive inte-i---(---1 ----’
gern such that b?>by+ for any integer m >_ l and for any O <_i n.
Then we have"

( ) For any ideal a of R, ab or a-b for some O<_]<_n--1 and
positive inSeger p.

(ii) b, b, ..., b_, b are prime ideals of R.
(iii)

b2-- Rb2-- b2R bb2

bn--Rn-baR- bb-- bnb--" b_b-bnb_.
Proof. We use an induction on n. For n-l, (i) follows from

Theorem 2, (ii) from Lemma 6, and (iii) Proposition 3. We shall as-
sume that the theorem holds, for every integer less than n, and will
prove (i), (ii), (iii) for n.

Let a be an ideal such that a b==b_,, then a b_ for some
positive integer k. Let k0 be the minimal positive integer such that

/g0a:b_. If k0 1, then by the assumption of the induction we must
have a=b. for O<_]<_n--2 and for some positive integer p. If k0>l,
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then ab_, and we assume ab_. Since a:b=(:b._, we can
choose the largest positive integer k such that ab_, then a=b_;
because if ab_, then a-b_15 or some ideal 5 such that 5 b_.
Hence by the assumption of the induction 5-b or some positive in-
teger p# and ] such that 0] n-2. Therefore a-b_, a contradiction.

Next we shall prove (ii). Let aS0 (mod b), a0, 50 (mod b)- - b’orRfor some ideals a, 5 then by the results, in (i) a-b_’,
’-+- R+ contradicting5 ’- ’- b? or R, hence aS-b_

the act that 5 0 (mod b).
Finally we shall prove (iii). It is sufficient to prove the fact that

b Rb bR bb bb b_b bbn_ only. Using the fact that
R, b, ., bn_, b are prime ideals of R, b b# (]=0, 1, ., n--l) im-
plies b-b# or some ideal , hence we have a0 (mod b) since b is
a prime ideal, and a=b, therefore

Remark. If R is commutative, then b={0} [3; Satz 11].
Using Theorem 3 (i), we can prove the following;

Proposition 7. Let R be a non-idempotent M-ring, then we have
the series R>R>. >b>b>. >b>b>.. We assume that in
the above series we have for the first time b--b+1, then
If ]1, then N=b for some Ogkgi or Nb+-b+=..., and b+
=b+=... is not a prime ideal of R. If ]-1, then N=b for some
0 k i or N b b+ and b b+ is a prime ideal of R.
In either case, =b is an idempotent ideal of R.

More generally, using the transfinite induction we have the follow-
ing as a generalization of Theorem 3. We denote by A a set of ordinals.

Theorem 4. Let R be a non-idempotent M-ring, then we have the
series"

R>R> >R>R+I> >hi, bl==iR

In general, we define series {b} as follows" if is an isolated ordinal
b.==l b_, and if is a limit ordinal b.=<, b.

Now we assume for a fixed 2, b>b+ for every and every
positive integer ], then we have"

( i Let a be any ideal of R, then b or a=b for some
and some positive integer p..

(ii) For any ag2, b. is a prime ideal of R.
(iii) bl=Rbl=blR

b Rb bR blb bbl

for any fl, a such that fl a .
And as a generalization of Proposition 7"
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Proposition 8. Let R be a non-idempotent M-ring, then we have
the series (b.} as Theorem 4. If in the series we have for the first time
b--b+) for some and some positive integer ], then of course )+1
=b/=..., and we have"

( ) If ]1, then N--b for some Ogflg2 or Nb/, and b/ is
not a prime ideal of R.

(ii) If ]=1, then N=b for some Ogfl< or Nb=b+--...,
and b--+ i8 b prime ideal of R. On either case b--f.b, is an
(unique maximal) idempotent ideal of R.

As a summary"

Theorem 5. Let R be a non-idempotent M-ring, and {b.} be the
series as Theorem 4. We set b=N.e bo, then

( If is any ideal of R, then ab or a--b for some fl and
some positive integer

(ii) There is a minimal
we have bb- bb.-- b.

(iii) b coincides with the unique maximal idempotent ideal of R. )

Now we add some remarks"
Definition. If for every element x of a ring R, there exists a posi-

tive integer k such that kx=O, then we call the smallest positive integer
k such that kx=O the characteristic of R, and denote ch(R)=k. If
there is not such a k, then we set ch (R)=0.

Let b be any one of the series {b.} in Theorem 4. Let x be any
element o b such that x

j+=(RxR, b ). We define the characteristic of a element x ch(x)--k
the smallest positive integer such that kx e b/" if there is not such a
k, then we define ch (x)=0.

Lemma 9. Let x be any element of b such that x e bJ +1, then
ch (x) ch (bl

Proof. It follows from b =(x, Rx, xR, RxR, b+).
Lemma 10. Let x be any element of b such that x b +t, then

ch (x) is a prime or zero. If i=0, then ch (x) is a prime.
Proof. We assume that ch (x) is not zero. If ch (x) is not a prime

1) We prove that bJ--bj+l actually occurs. Let A be the class of all ordinals.
We set A0={ e A Ibg=b+1 for all i>0}. For every a e A0, we can choose an element
x. such that x. e b., x. b2., therefore we have a one to one correspondence aox.
between A0 and {x.}___R, so A0 is a set. If we denote by AI the cardinality of a set A,
then we have

IR I_>l{x,}l--IA01.
Therefore, if we choose a set of ordinals A such that IAl>lRI, then for some e A

and some j> 0, b:b+ 1.
2) By (i) and Proposition 8, any idempotent ideal is either contained in b

or is b for some a and some j>0. But the latter does not occur, therefore b coin-

cides with the unique maximal idempotent ideal o.f R.
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and ch (x)=pq, p 1, q 1, then by Theorem 4 b= (px, Rpx, pxR, RpxR,
b+l), i.e. b=(RpxR, b/l), therefore for any element y of b qy e
contradicting ch (x)=pq. If i-0, then R=(x, R/) where ) means
the sum of modules. It follows that ch (R/R/) is a prime.

Theorem 6. Let R be a non-idempotent M-ring, and for b e {b,}A let

j+l ]+1 +2)and suppose ch(b/b ) 4: 0, then ch(b/b )-- ch(b+/b
--ch () / hn+l

_
j=p4=0 and p is a prime In case i O, then for any

]<_n not only ch (RJ/R+I)=poO is a prime, but also the residue class
ring R/R+ (] gn) contains only Po elements.

j+lProof. By Lemma 10 ch(b/bi )=p isaprime. Since
we can choose elements x, y such that x e b, x e

_
hj+l+ xy e / By Lemma 9 ch (x) =p, therefore p,x eand xy e

j+2+ Since + (xy, Rxy, xyR, RxyR, b ) wehence p. xy px. y e
can deduce ch(xy) ch(b+ +/b )=0, and therefore is a prime by

+ + j+2Lemma 10. Thereforep isdevisible by ch (b /h+ hence ch (b /b )
=p. When i=0, the conclusion follows from R=(x, R+’), where x
is an element of R, which does not belong to R.

Lemma 11. Let o be any M-ring, and let R be a non-idempotent
M-ring, then the direct sum Ro is not a M-ring.

Proof. We set R* =Ro. If R* is a M-ring, then there exists an
ideal 5 of R* such that R=R*5, since R<R*. Therefore
=R5o5, hence RS=R and 05={0}. Now we denote the projection of
R* onto R by t?, and denote 0(5)=5, thenR=RS=RbRR, thus R=R2,
a contradiction.

Proposition 12. Let R be a non-idempotent M-ring, then R can
not be decomposed as a direct sum of ideals.

Proof. If R is a direct sum of ideals R, R, i.e. R=RR., then
both R, R2 are M-rings. Now R>R Rp-2, henceRR and RR,_
therefore R<R for some i=1, 2, a contradiction.

Lemma 13. Let R be a non-idempotent M-ring, and let a be an
ideal of R, then R/a is a non-idempotent M-ring.

Theorem 7. Let R be a non-idempotent M-ring, and let R/N be
completely reducible as a left R-module, then R is a radical ring, i.e.
R=N. If furthermore R is left Noetherian, then b={0}.

Proof. Since R/N is completely reducible, R/N can not contain
non-zero proper ideal by Proposition 12 and Lemma 13, hence R/N is
a simple ring or a zero ring. But it can not be that N=R, there-
fore N=R. If R is left Noetherian, then by Nakayama’s lemma

{0}, because Nb-Rb b.
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