49. Examples of Obstructed Holomorphic Maps

By Takao AKAHORI and Makoto NAMBA Ryūkyū University and Tohoku University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1978)

1. By a complex space, we mean a reduced, Hausdorff, complex analytic space. For a complex manifold X, the set S(X) of all compact complex submanifolds of X has a complex space structure (Douady [1]). For $V \in S(X)$, dim $T_V S(X) \leq \dim H^0(V, \mathcal{O}(N))$, where $T_V S(X)$ is the Zariski tangent space to S(X) at V and $\mathcal{O}(N)$ is the sheaf of sections of the normal bundle N along V (see Namba [4]). We say that V is unobstructed relative to X if S(X) is non-singular at V and dim $T_V S(X) = \dim H^0(V, \mathcal{O}(N))$. Otherwise, V is said to be obstructed relative to X. If $H^1(V, \mathcal{O}(N))=0$, then V is unobstructed relative to X (Kodaira [2]). Examples of obstructed submanifolds were given by Zappa [5] and Mumford [3].

Now, let V and W be compact complex manifolds. Then, the set Hol (V, W) of all holomorphic maps of V into W is a complex space. In fact, by identifying $f \in \text{Hol}(V, W)$ with the graph $\Gamma_f \subset V \times W$, Hol (V, W) is regarded as an open subspace of $S(V \times W)$. Note that the normal bundle along Γ_f is canonically isomorphic to the pull back f^*TW over f of the tangent bundle TW of W. We say that $f \in \text{Hol}(V, W)$ is unobstructed if the graph Γ_f is unobstructed relative to $V \times W$. Otherwise, f is said to be obstructed. It seems that no example of obstructed holomorphic maps is known. The purpose of this note is to give such examples.

2. Let V be a compact Riemann surface of genus g. Let P^1 be the complex projective line. Then Hol (V, P^1) is nothing but the set of all meromorphic functions on V. It is divided into open (and closed) subspaces:

Hol $(V, \mathbf{P}^1) = \text{Const} \cup R_1(V) \cup R_2(V) \cup \cdots,$

where Const is the set of all constant functions and $R_n(V)$ is the set of all meromorphic functions on V of (mapping) order n. If $n \ge g+1$, then $R_n(V)$ is non-empty. If $n \ge g$, then every $f \in R_n(V)$ is unobstructed so that $R_n(V)$ is non-singular and of dimension 2n+1-g. This follows from the fact that $f^*TP^1 = [2D_{\infty}(f)]$, where $D_{\infty}(f)$ is the polar divisor of f and $[2D_{\infty}(f)]$ is the line bundle determined by the divisor $2D_{\infty}(f)$.

Theorem. For $f \in R_{g-1}(V)$, assume that $[2D_{\infty}(f)] = K_{V}$ (the canonical bundle of V). Then f is unobstructed if and only if

 $2 \dim |D_{\infty}(f)| + 1 = g.$

Proof. If f is unobstructed, then there is a connected nonsingular open neighbourhood U of f in $R_{q-1}(V)$ such that every $h \in U$ is also unobstructed. In particular, dim $H^0(V, \mathcal{O}([2D_{\infty}(h)])) = g$. Hence $[2D_{\infty}(h)] = K_{\nu},$ for all $h \in U$. (1)

Let J(V) be the Jacobi variety of V. Consider the following holomorphic maps:

$$\begin{split} & \alpha : h \in U \mapsto [D_{\infty}(h) - (g-1)P_{0}] \in J(V), \\ & \beta : x \in J(V) \mapsto 2x \in J(V). \end{split}$$

$$: x \in J(V) \mapsto 2x \in J(V),$$

where $P_0 \in V$ is the base point. The map β is an (unramified) covering map of order 2^{2q} . (1) implies that the composition $\beta \alpha$ is constant on U. Hence α must be constant, i.e.,

 $[D_{\infty}(h)] = [D_{\infty}(f)],$ for all $h \in U$. This means that h is obtained as a pencil in $|D_{\infty}(f)|$. Hence $g = \dim U = 2 \dim |D_{\infty}(f)| + 1.$

The converse is easy.

Q.E.D.

By Clliford's theorem, we have

Corollary. Let V be a non-hyperelliptic compact Riemann surface of genus $g \ge 4$. For $f \in R_{g-1}(V)$, assume that $[2D_{\infty}(f)] = K_V$. Then f is obstructed.

3. Let V be a non-hyperelliptic compact Riemann surface of genus 4. The canonical curve C of V is the complete intersection of a quadric surface F and a cubic surface G in P^3 meeting transversally. Assume that F is singular, i.e., a quadric cone. Then the ruling on F gives $f \in R_3(V)$ which satisfies $[2D_{\infty}(f)] = K_V$. Hence, f is obstructed. In this case, $R_3(V) \cong \operatorname{Aut}(P^1)$ (the automorphism group of P^1), so that dim $R_3(V)=3$, while dim $H^0(V, \mathcal{O}([2D_{\infty}(f)]))=4$.

For example, let V be the normalization of the closure in P^2 of the curve: $y^3 = x^6 - 1$. Then, the meromorphic function f = x on V is obstructed.

4. Let V=C be a non-singular plane quintic curve. It is non-hyperelliptic and has the genus 6. The line sections on C determine a complete linear system |D| such that $[2D] = K_c$. Hence the projection π_P with the center $P \in P^2 - C$ is obstructed. Moreover, we can show that

(1) every element of $R_{i}(C)$ is obtained in this way, hence is obstructed.

(2) $R_{b}(C)$ is a principal Aut (P^{1})-bundle over $P^{2}-C$.

5. Let V be the normalization of the closure in P^2 of the curve: $y^3 = x^8 - 1$. Then V is non-hyperelliptic and has the genus 7. The meromorphic function $f = x^2$ on V satisfies $[2D_{\infty}(f)] = K_{V}$. Hence, f is obstructed. Moreover, we can show that

(1) $R_{\rm e}(V)$ is singular at $f = x^2$: the tangent cone at f is given by

No. 7]

 $\{(z_1, z_2, \cdots, z_7) \in C^7 | z_1 z_2 = 0\},\$

- (2) $R_3(V) \cong \operatorname{Aut}(P^1)$,
- (3) $R_4(V)$ and $R_5(V)$ are empty.

References

- Douady, A.: Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytiques donné. Ann. Inst. Fourier, 16, 1-98 (1966).
- [2] Kodaira, K.: A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds. Ann. Math., 75, 146-162 (1962).
- [3] Mumford, D.: Further pathologies in algebraic geometry. Amer. J. Math., 84, 642-647 (1962).
- [4] Namba, M.: On maximal families of compact complex submanifolds of complex manifolds. Tohoku Math. J., 24, 581-609 (1972).
- [5] Zappa, G.: Sull'esistenza, sopra le superficie algebriche, di sistemi continui completi infiniti, la cui curva generica è a serie caratteristica incompleta. Pont. Acad. Acta, 9, 91-93 (1945).