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80. Introduction. In a series of Notes published in these Proceedings,”
the present author has studied the infinitesimal deformations in affinely connec-
ted spaces. The main purpose of the present Note is to study the infinitesimal
deformations in the general space of paths and to generalise some of the results
obtained in the above cited Notes. To my knowledge, there are only three
parers on the infinitesimal deformations in the generalised spaces, the papers by
M.S. Knebelman,? by 8. Hokari® and by E. T. Davies.?

In Paragraph 1, we expose some formulae in the geometry of general space
of paths which will be useful later. In the next Paragraph, we study the Lie
derivations of tensors whose components are functions not only of position but
also of direction. In Paragraph 3, we shall define the Lie derivatives of the
affine connection and study some of its fundamental properties.

In Paragraph 4, we study the affine and projective collineations in the
general space of paths which were also studied by M.S. Knebelman.

In the last Paragraph, we define the deformed space whose components of
the affine connection are I'), + DIy, and calculate the curvature tensor of the
deformed space; The full detail will be published elsewhere.

§1. General space of paths.” A general space of paths is an n-dimensional
space in which is given a system of curves, called paths, such that through any
two points given in a properly restricted region, there passes one and only one
path. If we introduce, in this general space of paths, a system of coordinates
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(', 2, ... , &), the paths are represented as the integral curves of a system of
differential equations

dz* . N
(1.1) ot HN (2, )=0, P=—-,

where H?(z, &) are homogeneous functions of the second degree in 3*
Thus the functions I'),(, )-defined by

(1.2) a1 AH

WS T ow B
are symmetric with respect to the indices x4 and y, and are homogeneous of
degree zero in %,
The law of transformation of the functions I'i, under a coordinate transfor-
mation z*=2*(2") may be obtained from (1.1) assuming that the parameter s

is invariant:

rid v 2,2
(1.3) l—,a_r)z (de"' az’ ., + & ))

B cxr \ o 93" M duiPdaT
from which, differentiating with respect to %°, and remarking that

;;;vo: dxw 7‘6

9w v
we have

e _ 0F° Ja* 02’ Ja*
a4 =Gk o gE g L

where the solidus indicates the partial differentiation with respect to 4.

. . . . = AZr L, .. .
The transformation law of &* being given by #*= Py %%, it will he easily

seen that the partial differentiation 7%, of an arbitrary tensor T%,, with
respeet to 5 gives a new tensor having one more covariant index.
The equations (1.4) show us that the quantities defined by
(1.5) Fyw=T"0
are components of a mixed tensor symmetric with respect to three lower indices.
The law of transformation of the functions I, being given by (1.3), we
can define the covariant derivative of any tensor 1% ,, by
(1.6) T vie=Trp o= Prpssal g+ T M —Toan Lo = Tl 5
ihus, the semicolon indicating the covariant derivative while the comma the
ordinary derivative with respect to 2*. The parallel propagation of a vector be-
ing defined by the vanishing of its covariant derivative, the functions I, are
called the components of the affine connection in the general space of paths.
Applying the definition of covariant differentiation to the &*, we find that
)»=0,
say, & is a parallel vector field with respect to this affine connection.
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The operation of covariant differentiation is not commutative. The for-
mulae of Ricci
Qa.n T pviwio— T pvicio
=T R soo— T2 ey RS oo — T pa R vios — T 1 ja R oot
may be obtained by a straightforward calculation, where
18 Rlpe=(Thy,o—Fival 50 ) = (Lo — Lhiopal 3vi®)
+ e — iy
are the components of the curvature tensor of the space, and satisfy the following

identities
(1.9) R.,..+R%,..=0,
(1.10) R o+ R+ RLupy=0,
.11) R oot B o + R oo

+ (IR puo + Niua R pov + ioaR% v )i =0
The last two are identities of Bianchi.
If we commute the operations of covariant differentiation and of partial
differentiation with respect to 4°, we find
(1'12) T’:,,,y;..,/o— - pV/oin = o)l.vrﬁmc - ﬂav :wo - T’:parswo .
Concerning these operators, we have the identities:
(113) T L S - S
(1.14) R pwse + R pwoyy + R pov/w=0.
§2. The Lie derivatives of tensors. Let us consider an infinitesimal de-
formation of the space
(2.1) a2 =x*+E(x)dt,
which displaces the point 2* to the infinitely near point z* + &*(x)dt, where £*(z)
is a vector field defined at every point of the space and d¢ is an infinitesimal
quantity. 'We shall concerned with only the quantities of the first order with
respect to dt.
If we consider a scalar field f(%, ) at the point #* and displace it from the
point 2* to an infinitely near point Z*, we have a value f(Z, %) of f(=,%) at 2
But the f(=, %) being a scalar, we may assume that we have

F(&,B)=F(x,%).

Thus putting
(2.2) Df={(z, &)—f(%,%),
we have
(2.3) Df=df=[f,,& +fn£,5"]dt,

or, in a tensor form,

(2-4) Df = [f W& +f/aea;v5’v1dt .
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We shall call Df the Lie derivative of the scalar f(z, %).

The Lie derivative of a scalar field being thus defined, we shall consider next
a contravariant vector field v*( %, 4) and define its Lie derivative in the following
manner,

We consider a point P(2*) and a point Q(z*+v*¢) which is infinitely near
to P’(2*) and lies on the direction given by v*, then we displace these two points
by the infinitesimal deformation (2.1):

P(2*) > P'(2*+8Mdt),
Q(z* +v'e) > Q'(a* +v'e+ 80t + &, 0'edt)

thus, we have a vector (7, Zi?)=1?Q/e at 2* whose components are given by
P(Z, B) ="+ &, 0dt .
On the other hand, we have, at @,
P(F, &) =0+ [0 18" + 0,3 ]dt

thus, putting

(2.5) Dv*=v(3, 2) —2(%, Z),
we have

(2.6) Dot =[085+ *,,6% 3" — & 0 ]dt ,
or, in tensor form,

@ DP=[2",,& + "%, —E*y0° ]dt .

This gives the Lie derivative of a contravariant vector field v*

Following this definition of Lie derivative, the Lie derivative D** of the %"
is identically zero.

To obtain the Lie derivative of a covariant vector field «,(z, %), we take an
arbitrary contravariant vector field v*(#, %) and form a scalar u,v*. Then from
the assumption for a scalar field, we have

(2, 2)(Z, 3)=u(®, 2)v*(2, 2) ,
form which we find
(2.8) D(u ™) =(Du )v* ¥ u,(D) .
Substituting (2.3) and (2.6) in this equation, we find
[(uav*) 08 + (unv*)ub% 2" 1dit
=(Du)v* +up [, +2%68% 5" — 820" ]dt

from which we have

(2.9) .D’ll«)"—: [u,,\f" + ux/af",yﬁ;" + é'“,xu,a]dt )
or, in tensor form
(2010) D'UA= [u};vev + u}/aea;y;vv + ea;)"uu] dt )

the vector field v* being quite arbitrary.
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"The tensor form (2.10) may also be obtained by substitution of (2.4) and
(2.7) in (2.8).

The Lie derivatives of a scalar, a contravariant vector and a covariant vector
being thus obtained, the Lie derivative of an arbitrary tensor field of any type,
say, 1%, may be obtained from the equation

DT ot w” )= (DT p)uav'w” 4+ T u(Duy Yo' w” + 1% yun (Do w®

+ 7% o (Dw”)
where u,, v* and w* are arbitrary vectors. The Lie derivative DT3,, of 7%,
thus obtained is
(211) DT =T o + T jab% o = T% 8 o+ T8+ T 080 ] dE
or, in tensor form
(212) DTy = [T p0;of® + T /ol — T% 80+ T 0 8% + T 8%, ) dE

§3. The Lie derivative of the affine connection I's,. To obtain the Lie
derivative of the affine connection I';,, we consider first a contravariant vector
v*(®, &) and displace it parallelly from the point 2* to a nearby point 2*+ da?*,
then, we obtain at 2* + da?,

3.1 (z+dz, 5+ds)
=0+ [initda” — Mhtda .
We displace next the vectors v*(w, %) and %*(x+dz, &+d%) by the in-
finitesimal deformation (2.1). Then we have two vectors
(&, ) =20+ & w'dt
at T =2+ £*dt and
(3-2) P(Z+dz, 34 d2) =0+ 0, L Gavde” — Tt da
+ (8 8 da” Y (W + 0% D atda” — M Pdam)dt
=v*+*, [ hivrda’ — Myotde’
+ [0 + & o [P da — 8% TP da™ + &, otda® ] di
at T +dz* respectively.

Now, to ubtain the displaced values I'3,(Z,%) of the affine connection
I'ly(x, &), we assume that the vector ©°(%,%) is parallel to the vector
9*(%+d%, % +d&) with respect to the varied affine connection I'2,(Z, ). Thus,
we obtain

(3:3)  W(E+dT, & +dT)=1"(7, &) + (T, &) ul (T, )FTdE
—T(3, B)™(E, B)dz" .
Put
(3.4) DIy =Tz, %)—Tn(% %),
and subtitute (3.1), (3.2) and
(@, &) =T+ Iy W80 dt+ Thy8° W dt — DI,
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in (3.3), we find
0 itde” — Mt da” + [8 0% + 8 oo it da™ — 2, D d e
+ &, ardadt
=0+ E,0°dt+ (V0 + E YIS + %, A+ T8y 8 Li%dE)
X (@ + & 47de)(da” + & sd2®)
~(Iay+ T2 At + b, 6 Jiodt — DA (0" + 8 tde)(da™+ & odic®)
from which we have
(8.5) DIy=[&, =8l + &, 00+ 8+ Ty o8+ € i e
or, in tensor, form
(3.6) DIy, =8+ R 00874 Thyule®]dt .
The equations (3.5) and (3.6) give the Lie derivative of the affine connce-
tion Iy,
The assumption on the deformed affine connection Iy, may also be cxpres-
sed by the formulae
(3.7) o +80* + D(v* + 8*) = * + Dv* + 8(v* + D) ,
where § and 8 denote the covariant differential with respect to the original affine
connection and the deformed affine connection respectively.
Thus from (3.7), we obtain
(3.8) D& —8Dv* =" (DIh)dx” — o DIy )i da” .
The Lie derivative of the dz” being zero, we have, from (3.8),
(39) D)= (Do), =t (D) — (DTS .
The analoguous formulae for a covariant vector and a general tensor are re-
spectively
(3'10) D(uuw) - (D“u):_v= - ’UIA(DIY:-V) - uv-/a(DF;v)é’p
and
(3.11) D(T i) — (DT )i
=T (DIe) =T (D) — T (DI — T (D)
These formulae give the law of commutation of the two operations, the Lie
differentiation and covariant differentiation.
1f we replace the covariant differentiation by the partial differentiation with
respect to &¥, we obtain

(3.12) D(p)—(Dv*),=0,
(3.13) D(upp) = (Du)p=0,
(3.14) D(T%,0)— (DT ,0),.=0.

§4. Collincations in the generalized space. Consider a path, that is, a
curve 2*(s) satisfying the differential equations

(4.1) a2 d:z:) da* da’

) A%\ ar” =0.
ag TTw\% 50 ) g s =0
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If we displace the every point of the curve by an infinitesimal deformation
(4.2) () =a(s) +&*(s)dt,
we have a new curve 2*(s). We shall seek for the necossary and sufficient condi-
tion that the new curve thus obtained be also a path of the space. In order that
it may be the case, we must have the differential equations of the form

EB | o (- dE\dE dP (- d:i) di
& T »v(*’—ds— “ds ’zz‘s‘-f’("*f&s ol

Substituting (4.2) in these equations and taking account of (4.1), we find
S5 dz* da’ dz* dz’ 88 da?
43) 25 o 0T v -
(43) aF ¥ Bl ds ds ds ds ds P ds ’

which define the geodesic deviation in the general space of paths.

&+ Iy

Now suppose that the £ is a contravariant vector field defined in the space.
Then the equations (4.3) may be written as

w . Y A
4.4 A 2 gw A ga A7 dat du dx
(4.4) [s ot R+ T g | =000

If every path in the space is transformed into another path by the infinitesi-

mal deformation

2 =2*+8(a*)dt,
we shall call such an infinitesimal deformation the infinitesimal projective colline-
ation of the space.

In order that the space admit an infinitesimal projective collincation, the

-
equations (4.4) must be satisfied for every value of % , thus we have®

(4.5) ek:u;v-'*‘ R wol” + 1 ﬁwea;w:"'w =P s+ P/\.Sﬁ + P/u/v‘."}‘)
this eondition is also sufficient.
1f we suppose that the parameter s which is affine for the original path is
also afine for the displaced path, we have p=0, and we find, instead of (4.5),
(4.6) B+ B + Mo =0
In this case, we say that the space admits an infinitesimal affine collineation.
§5. The deformed space. We have defined the Lie derivative Dv* of a
contravariant vector field v* by the formulae
Dv*=v(Z, 3)—(Z, %) .
But, strictly speaking, the Dv* is defined at Z* and nat at 2>
To find the value of Dv* at 2*, we may replace z* by 2* and dt by —dt in
the above equation, then we have
—Dv*=v*(z, ) —(=, &)

or

6) M. S. Kncbelman, loc. cit., p. 541.
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(501) 7{)"(&7, (‘t) =’UA(IU, d’) +D’L‘)‘ .
Similarly we have
(5.2) (2, ) =w(2, )+ Dy,
for a covariant vector field,
(5.3) Tz, ) =T%;.(2, )+ DT% s
for a mixed tensor 7%, and
(5.4) rﬁ’“(w’ %) =F'>,‘,y(£l7, ) +D['|>;J‘

for the affine connection.

We shall call the deformed space, the space whose parameters of connection
are given by I'ay.

Denoting by ¢ the covariant derivative with respect to I': wv, We have, from

the definition of I"2,,

P45 =2+ 80 + D(v* + &) ,

from which
(5.5) 0 =8>+ Ddv .
Similarly we have
(5.6) U, =8u, + Déu,
for a covariant vector field v, and
(5.7) 1, =8T. s+ D8T .,

for a mixed tensot field 7%, .

These formulae may be written as

(5.8) ?y=v+ D),
(5.9) Uysy = Uy +D(Uys0)
(5.10) Trpvo =T 350+ D(T% ;)

respectively.

Now, the formulae of Ricci are
V0= iy =R pyo— /e R gy
for the original space and
Pivso— Ty =R pywr— Vya B g’
for the deformed space.
On the other hand, we have
P =00+ D(Vv0) »
consequently
TR e o= R gy =R s — /e R% 3302 + D( R, v — 00 RS gyud®) «
Remembering that * ="+ Dv* and 7/, =1/, + Dv*/s, we have
(5.11) R.,..=R\,.,+DR,.
The formula (5.11) may also be obtained in the following manner.
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Substituting I'ay=1I"py+DI":, in the equation
Bopw=Tave—Tivsal 568 ) = (Thwy —Thosal 3v3°) + TinFaw— Lol av
we obtain
(512)  Ffpu=B g+ (DI — (DI~ Tha(DIE)E
+ I, (DIt .
Substituting (3.6) in this equation, we find
Rle=Rie + [ e+ Rh o + RE 1w + DivasuE5p3°
+ Ia8% ;02 dt
— [ o+ R+ B 4 oafy D haainE%p3° 4 hoaf0a® 1t
—I3a(8% 50 + R g or € + Iy 067 ,60° ] di
F hwa( 8% + Bl g+ I 75001 dt
from which
(5.13) R =Ripot [Rpeiaf” — R v bt
=R o8 Ry o€+ R 0% + B b, 1dE
by virtue of the identities (1.11), (1.13) and (1.14). The equation (5.13)
shows the validity of the equation (5.11).



