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§0. Introduction. One of the present authors had studied the
conformal transformations

0.1) g =P8
of Riemannian metrics which change any Riemannian geodesic circle
B dx» 02 o%xY
(0.2) as® + d’: Luy d:: d:” =0

into a Riemannian geodesic circle, and called such transformations
concircular transformations.®
In order that the conformal transformation (0.1) be a concir-

cular one, it is necessary and sufficient that the function p satisfies
the differential equations

B
0.3) Puv =Pu;v—PufPv+ ——12— g i P8Py Zuv = PQuv,

where p. =(log p); . and the semi-co m denotes the covariant diffe-

rentiation with respect to the Chrisiuffel symbols {2}, ¢ being a
certain scalar.

If we put
1
0.4 ==
0.9 =4
the condition /0.3) may also be written as
0.5) Oy =aLury

where o,=0;, and « is a certain scalar.

If the partial differential equations (0.3) or (0.5) admit a solu-
tion, the family of hypersurfaces defined by p=constant or o=cons-
tant are totally umbilical and their orthogonal trajectories are
geodesic Ricci curves.

Conversely, if a Riemannian space contains a family of o' total-
ly umbilical hypersurfaces whose orthogonal trajectories are geo-
desic Ricci curves, the space admits a concircular transformation.

In the present note, we shall study the spaces which admit the
concircular transformation and satisfy some additional conditions.

§1. We shall first consider a Riemannian space which admits a

(1) K. Yano : Concircular Geometry, 1, 1I, III, IV, V. Proc. 16(1940), 195-200 ;
354-360 ; 442-445 ; 505-511 ; 18 (1942), 446-451.
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concircular transformation and which is conformally flat.
As our space admits a concircular transformation, there must
exist a function s which satisfies
1.1) ouv=aguw ,
where o.=0,. and a is a certain function of coordinates. Thus,

differentiating the quantity g®seoy covariantly and taking account
of (1.1), we find

(&P opay) v =2a0y ,
from which we can conclude that the quantities g*sssy and a are
both functions of ¢ alone. Thus we can put
1.2) 2% agoy=¢(0), a=a(o).
Next, substituting (1.1) into the Ricci identities
—-aAR)‘-;wm S Opsvio T Ouiwivs
we find
1.3) —aRY =o' (guvo0—Guuwoy) -
Multiplying this equation by g and summing up with respect
to the indices # and », we find
1.4) —aR} y=(n—1)a’c.,
which shows that the direction ¢*(=g£“%.) is a Ricci direction, R*,
being the mixed components of the Ricci tensor R (=R*.ua).
‘Now, the space being supposed to be conformally flat, we have

R'\ uvu="7_l__2' (Ruﬁﬁ—Ruua?ﬁng.ﬁ-gm R't) —@—:&m—)‘(guv&—guﬁ’y‘).
Substituting this into (1.3) and taking account of (1.4), we find

- n.1.2 (Ruvdw"Rum"v"" (n—1) &' guoot (n—1) a’g,wav)

+U;‘_’1“)—R£'n—_'2')— (8urou—8uuty) =0 (GurOu—Euud)) 5
or

Ry Rgyuy L X8 Ruw _ R @G

[ n—2 n-1) n=2) " n-2 ]”“': [_ n—2 © (n—1) (n—2) Ta—2 ]6"'
From this equation, we can conclude that

R v R 1 a’ —
(1.5) —niz + [(n_l) (n_z) n n_z ]gp.v— ¢6",6V’

where ¢ is a certain scalar.
Multiplying this equation by g. and summing up for the in-
dices # and v, we obtain

R na’ o
-9 (n—1) (n—2) + n_z—‘/’g" Oudy.
On the other hand, we have, from (1.5),
R}‘y R B a/ _
n—2 +[ w—1) m—2) " n__z]tﬂ-sba"ay.
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Differentiating this covariantly with respect to #*, contracting
with respect to 4, and taking account of (1.1) and of the identities

R?V;A=";— B
we find
_ Ry Ry a’ey _,
~sm—2) T =1y Gi=z) T u—g ~¥adet @+ ade,
or
__@n=3Ry _ _a’
2—1) n—2) (Pad*+ (n+1)ap proagy )dy.

Thus, we can see that, when #>3, R is also a function of
o alone. Thus the equation (1.2) and (1.6) show that ¢ is also a
function of ¢ alone. Thus we can put
R=R(0), ¢=¢().
Consquently, the equation (1.5) gives

— Rp.v RgMV —
(1.8) Hp.v: n—2 + 2("__1) (n__z) —f(ﬂ)gu\"l"l’(")“u“v‘

The space which is conformally flat and whose tensor ., has
the form (1.8) being a subprojective one, we have the
Theorem 1.1. The n(>3)-dimensional Riemannian space which
admits a concircular transformation and is conformally flat is a sub-
projective space of Kagan.
Conversely, for a subprojective space, we have
1.9 C* v =R pyo+ 1T 10— w0y + gun 1T o — guoll* v=0,
(1.10) Cove=IT pyso—1II oy =0,
and (1.8). Substituting (1.8) into (1.10), we find
S (guvoo— Guuoy) +¢P (0us00v—dundn) =0.
Multiplying this equation by g., and contracting with respect
to # and v, we have
(#=1) f 00+ 54 (&7 0807) su— 8" G =0,
which shows that g®scoy is a function of ¢ alone, that is to say,
1.11) g ouav=¢(0).
Next, multiplying (1.8) by g** and contracting, we find
sy =) +9/(0) g,

from which we can see that R is afunction of ¢ alone, that is,
(1.12) R=R (o).
Now, from (1.9), we have
— R pyo=II 4y 60 —1I poov+ guv M T v —guua I 1y,
from which, we have, taking account of (1.8),

— R a= (27 (0) + () 870001) (guv0w—Euut)
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or
(1.13) — R o= (2£(0) +$(@)9(0) ) (Gurdu—Luats) -
The equation (1.13) shows that the differential equations

Opsv=0Guy
are integrable. Thus the space admits a concircular transformation
and consequently we have the

Theorem 1.2. Subprojective space of Kagan adwmils a concircular
transformation.

§2. If a Riemannian space admits a concircular transforma-
tion there exists a function ¢ such that

2.1) Opiv=08uv,

and we know that the hypersurfaces defined by s=const. are all
totally umbilical and their orthogonal trajectories are geodesic Ricci
curves.

We shall represent one of these hypersurfaces by parametric
equations

(2-2) x)‘:xk(ui) (i’ j9 k:"'=112:"'n-—1)’
then we have

2.3) a\B; *=0,
where

@.4) Bir=02

that is, the vector o is normal to the hypersurface. Thus denoting
by B* the unit vector normal to the hypersurface, we have

U)\:'\/Ei io’pdy B)u
Denoting the first and the second fundamental tensors of the
hypersurface by g, and H,; respectively and the curvature tensor

by R! ., the equations of Gauss for the hypersurface may be writ-
ten as

(2.5) R ja=Be R yyot+ HpH' v—HH' &,
where
Bi¢xe=B' \Bj*By*B; * and B’ »=g'g\,B; *.
But, the hypersurface being totally umbilical, we have

Hy=Hgjy.
Thus the equations (2.5) become
(2.6) R yo =By R yye-+ H2 (gt —&nl}).

In these equations, contracting with respect to ¢ and / and
taking account of the relation

B \B; “=09—B\B*,
we find
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Ru=R' ns =B} (83 —Br\B*) R* pyu+ (n—2) H*gy.
Substituting (1.3) in these equations, we find
@.7) Ry=ByRu+| (1—2 H+a Jgn.
Now, we assume that, the space admitting a concircular trans-
formation, the tensor ., of the space has the form

2.8) Iou.=f 0) g+ ¢ () ouoy,
Then we have

Ro=| g0y~ #=DF©) [~ 1-29 ).
Substituting this €quation into (2.7), we find
Ru=[ gy — =D 0 + (-2 B+ g

Thus we have the

Theorem 2.1. If a Riemannian space admits a concircular trans-
formation, that is,there exists a function o such that cuv=agw and the
tensor Iu of the space has the form (2.8), the totally umbilical hy-
persurfaces defined by o=const. are Einstein spaces.

Conversely, the space admitting a concircular transformation,
that is, there existing a function ¢ such that suv=agw, if we
assume that the totally umbilical hypersurfaces s=const. are all
Einstein spaces, that is,

Ru=rgn,
we have, from (2.7),

ByRu =[1— (—2 2—a Jg.

Multiplying this equation by B/gB‘y, and taking account of
B! pBj+=0;—BsB*, guB’eB"y=gsy—BeBy,

and of
B RM"PB\«:
we find
(35— BaB*) (B—ByBY) Ruv=[r— (n—2) H'~a’ | gnB! 6B,
or

Rey~pBaBy=[1— (=2 H'—a’ | (gow —BsBy),

which shows that
Iy = fgu +ouoy,
B, and o. being proportional. But, H?, a’, v and p being functions
of ¢, we can write
I, =f(0) guv + ¢ (0) duay.
Thus we have the
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Theorem 2.2. If a space admits a concircular transformation,
that is, there exists a function o such that o..,=ag,., and if the totally
umbilical hypersurfaces o=const. are all Einstein. spaces, then the
tensor M of the space has the form (2.8). (n>3).

If a Riemannian space which admits a concircular transfor-
mation is conformally flat, then the tensor 7., of the space is ne-
cessarily of the form (2.8), and consequently the totally umbilical
hypersurfaces s=const. are all Einstein spaces. Eut totally umbilical
hypersurfaces in a conformally flat space being also conformally
flat,”® these hypersurfaces are also conformally flat. These hyper-
surfaces being Einstein spaces and conformally flat spaces at the
same time, they are spaces of constant curvature. Thus we have the

Theorem 2.3. If a Riemannian space admits a concircular trans-
formation andis conformally flat, the hypersurfaces defined by o=
const. are all spaces of constant curvature. (n>>3).

§3. In this Paragraph, we shall reconsider the case in which
the space admits a concircular transformation, that is, there exists
a function such that

3.1 Opsv=08uy
and the tensor I7,, of the space has the form
3.2) Ty =f(0) 8uv +¢ () duay.

We know that a and g*¢gsy are both functions of ¢ alone. Contrac-
ting (3.2) by g**, we find

Sy =1 ) +9 (0 &¥opor.

Differentiating this equation covariantly, and taking account of (3.1),
we have

(3.3) - 2(71_%— =nf"ov+¢' a8 apay+2Pacy.

On the other hand, from (3.2), we have
T, =\ + s,
Differentiating this equation covariantly, and taking account of

R,
/4 )‘ viA 9 (n—l) ’
we find
(3.4) "'2(71?_;1‘1—)=f’0‘v+¢'d)‘0)‘ﬂv+ (n+1)</)aa».
Comparing the equations (3.3) and (3.4), we find
(3 . 5) f' = sba,
Thus we have

(1) K. Yano : Sur les équations de Gauss dans la géométrie conforme des espaces
de Riemann, Proc. 15 (1939), 247-252.
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M v iy =f Guv0u + ¢’ 000v00 + Pauutty+ Py G
1 Guatv— 0u0 Oy~ PaLuvT0 — P0G, Gurv
= (f' —¢a) (guy0u —&guudy) =0,
and consequently we have the
Theorem 3.1. When a space admits a concircular transformation,
that is to say, there exists a function ¢ such that ouv=ag,, and the
space has the tensor of the form (3.2), then we have
(3.6) ”pv;u"”y..:v =0.
We shall now suppose that the space admits a concircular trans-
formation and its tensor .. satisfies the equation (3.6).
From equation (1.4), we have
B;*B'R., =0.

Differentiating this covariantly along the hypersurface and ta-
king account of

Bjtu=guHB*, B',=—HB",
we find
&uHB*B'Rv—HB; "B;.Y Ry, + Bj * BB ® Ry =0.
Substituting (2.7) in this equation, we have

2xHB B”R,.V-HR,k—[(n —2)m+a']Hg,,+B; #B'B; “Ruvie =0,
or, according to (3.6),
3.7 2uHB* B'R,, —-HR,,—[(n—Z)H’+a’]Hg;z
+B;# BBy * R~ 180 =0.

On the other hand, considering an infinitesimal deformation

we have
3.9) Xg,w=a,.;»+dvm =2a8uv, P

and consequently the deformation defined by (3.8) is a conformal
one. Substituting (3.9) in the equation

3.10) X{ :,}=—%~-g"“[ (Xgup) v+ (X€uv ) iu— (X&v) o ]
we find
3.11) x{p}= {00+ Bou—orgn].
Substituting (3.11) into the equation
8.12) X = XA Yo —(XCA oo
we find

(1) See, K. Yano : Groups of transformations in generalized spaces. Akademia Press,
TOkYOs 1949.
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XR* jvo= —a"[a,t V0N —0y 0y O +-0* Gy 0y — 0 Guady ]

—a’[a,;;ﬁ:;— Oz O+ Gy 30 — gn»""i\‘] »
or

(3.13) XR jvo= -—a”[aﬁaﬁz—aﬁ O+ guna, —-a*g,way]

““Zaa’[gu‘vaﬁ‘,—gnwaﬁ ],
from which, by contraction,
(3.14) XRuy=—[2(1—1) a0’ +a" 30\ [gin— (1—2) 04
The XR,, being given by
XRM’I=‘7¢Ruv;z+6“;uRuv+0¢;vau
0'=¢Ruv;u+2aRp.v,
we have, from (3.14),

(3.15) 6*Ruva= —2aRu —[z (n—1)aa +az"am]g,w — (1—2)a” Gusv.

The ¢* being proportional to B*, we have

'\/MB";%B‘"R;L‘UW = ——2aB§,}'R,w - [2 (n’_l) aad’ +al'd)‘0'}t]gjk,

ot

(3.16) V4 ;;‘a)‘B’_‘,zB"’R wvio = —20.R 5 —-[Znaa’ +a”’ crar+2a(n—2) H”]g i o

Thus substituting (3.16) into (3.7), we find
(3.19) —HRp=rgw, (ax0),
because of the relation

2  _ _Ho,
TN

Thus we have the
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Theorem 3.2. If a space admilting a concircular transformation
has the tensor My such that Muwe—Mwy=0, the totally umbilical hy-

persurfaces which the space conlains arve all Einstein spaces.

Theorem 3.3. If a space admitting a concircular transformation
has the tensor Ww such that Mwe—Iwy=0, the tensor M w has the form

T =f(0) g +¢ (o) ouov.

(1) For the hypersurface o=const., we have
ouBjP=0,
OusvBj #Be v+ ouHj p*=0,
agjx+ ouBrgi=0,

and consequently,




