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1. Introduction.

In the space of n complex variables (z,..., z), there exists a
domain B, such that any function analytic in B hss an analytic
continuation over the domain D which is strictly larger than B.
Such D is called an analytic completion of B. For any domain B,
there corresponds a domain H(B) called its envelope of regularity, or
maximal analytic completion, such thatx

(i) H(B) is a analytic completion of B, and
(ii) H(B) S a domain of regularity, i.e. there exists a func-

tion which cannot be continued beyond H(B).
The geometrically explicit form of the envelope of regularity

for a given domain still remains almost unknown. One of the
few resul concerning this branch is the following due to S.
Bochner-)

Theorem 1. The envelope of regularity of a tube-domain T is
its convex hull (conve closure) C(T). Here the tube-domain .neans the
point set which can be written in the form

S, n)}.

where S is a domain in the real n-dimensional space (Xl,... ,x,.), and
S is called the base of T.

It seems qui#;e natural that this theorem should be conjectured
from the facts that he mapping w exp z transformes T into
a covering surface over a Reinhardt domain in (w)-space, and
that the Reinhardt domain of regularity is convex in logarithmic

sense. Bt his original proof is based upon the expansion of the

1) P. Thulien: Die Regularititshiillen. Math. Ann. 106 (1982)6476.
H. Carta’a-t). T!auilen Regularitts- und Konvergenzbereiche. Math.

Ann. 1D{ (1932) 617--647.
2) S. Bochner: A theorem on analytic continuation of tunctions in several

variables. /knnals o.f Math. 3 (1938) 14--19.
S. Bochner.--WoT. Martin. Several complex variables. Princeton 1948,

Chap. V.
3) Cf. e.g.H. Caftan: Les fonctions de deux variables complexes et |e

problme de la reprdsentation analytique.
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analytic function in T in multiple Legendre po|ynemials, which
seems o me too much complicated.

In this note, we shall give a brief proof of theorem 1.

2. General considerations.

From the definition of the tube-domain, it is eviden, ,hat

Lemma 1. A domain B is a tube if and only if it admits the
automorphisms

(2) z* z. + i c (j 1,... ,n)
where c; are arbitrary real constants.

Lemma 2. The envelope of regularity H(T) of a tu T is aso
a tube.

Proof. If a domain B is transformed onto itself by an analytic
automorphism, its. envelope of regularity H(B) is also transformed
onto itself.) Thus applying this fact for the automorDhism (2) of
T, we see that H(T) also admits (2), i.e. H(T) is a tbe.

Since the convex tube C(T)is a domain of regularity," we
can conclude that C(T)_ H(T). In order to prove ,he cnverse,
we have only to show that

Lemma 3. The base zl of the tube H(T) is convex.

3. A cross.shaped tube.

First, we consider a special case where n 2, and ,be base S
of our tube T is cross-shaped, i.e. it consists of two rectangles
T,tJT, where’

(3) T,--{(z, z)l x.; I- a}

and ; and b are positive constants. Without any loss o generality,
we can suppose that

(4) 0b (a and 0a <b
Let be an arbitrary constant between and 1, an put
(5) c ; + (1--) b (j ],2),

T,,= {(z, z) x:; c}

J. de Math. (9) 10 (1931) 1--114, Chap. V. 2.
4) H. Cartan--P. Thullen: loc. eit. 1). Theorem 3 Corollary 1.
5) Bochner-Martin: loe. cir. 2). p. 91. This can be proved also by the

facts that every bounded convex domain is a domain of regularity (cf. e.g.E.E.
Levi: Annali di Mat. (3) 18 (1911) p. 7) and that a finite (not ecessarily
bounded) domain which is the limit of an increasing sequence of domains of
regularity is also a domain of regularity. (el. K. Oka, Tfhoku Math. J. 4
(aa2) p. 27).

6) Of course this is a very special case, but from the results conserning
the cross-shaped tube, we can prove lemma 3. (el. 4).
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Since U,T,; C (T U T,,), we have only to prove the followJng
Theorem 2. Using the above notations, if a .function f (z, z}

is analytic in T U T,, it is also analytic in T,,.
Proof. Let h and be fixed positive constants, and

0 h Min (b, a).
Denote the elliptic dmains by

(6) E.(a; 1)z=x+iyt-+ y
a a+i

1
A (a; /)E (a /) @ E (ae; /),

where means the direct product of two domains. Similarly we
define E (b 1), A (c l) etc. by substituting a for the correspond-
ing letters b, c respectively. We define further D and . as the
following"

(7) D (a, h; l)E (a; l)- (h; 1),
9 (a, h ;1)D (a, h ;1) D (a, h; l),

and D:; (b, h; l) and (b, h; l) are similarly defined. Now, since
Ta and T, contain A (a; l) and A (b; l) respectively, f(zi, z)
analytic in 2 (a, h; l) and 9 (b, h; l). By conformal mappings

(s) (j 1,2),

the domains D (a, h; l) and D (b:, h; l) are transformed univalenlX
onto the circular rings

(9)
on tae w-plme respectively, where

.__ 1 [b+ (b +

and

1[ 1]-- h+(h+l*)-
By the transformation (8),f(z, zs) turns into a function (w, we)
which is analytic in (9). (w, we)can be expanded into a Laure.
series of wl and w2, and since this series convergess) in

(11) < w / ),
where

log %; (1)= ), log a: + (1--) log .;,
(w, w,) is also analytic in s lwl 7 (1). By the inverse map-

7) For the function (),"} we take the branch whose value is +1 at =1.
8) H. Tietze" (ber den Bereich absoluter Konvergenz yon Potenzreilen

mehrerer Vernderlichen. Math. Ann. 99 (1928) 181--182.
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pings of (8), q(w, w.) reverses to f(z, z.), which is analytic in
t2 (c 1 ), h ; l) where

(12) cj(1)
2

’)’(1)
:;(t)

From (10), (11) and (12), c( 1 ) satisfies the relation

(13) arcsinh c:; ) arcsinha: + (1--) arcsinh
1 1

But on the other hand, we see from (4),
b c ) a. and a c ) b,

then
O,E(h;t) E(c(t) t)

and
02 El(el (l); l) @ E (h l)

are contained completely in T,, and T respectively. Therefore
f(z, z) is analytic in

(c (), h ) tJ0 (J0, A. (c ( 1 )
for arbitrary [, where 0 is the closure of O. Now from (13) we
ebtain

lim c( c,(4)
and

lim A.(c(1) l) T,,

where cj is defined in (5). Thus our theorem 2 is proved.

4. The general case.

Now we consider the general case. Owing to the conclusion
obtained in the previous section, we have only to prove the follow-
ing theorem"

Theorem 3. Let A be a domain in a real n-space (x,...,x,).
Moreover, let us suppose that if contains a cross, it also contains
the convex, hull of the cross. Here the cross means two line-segments
intersecting orthogonally at their centers with each other. Then it is
concluded that A is convex.

Proof. First we consider the case n=2. If , is not convex,
there exist three points P0, P, P such that J contains the line-
segments PoP and PP but not PoP. Let X be a point on PP
moving from P toward P. and further let Xo be the first point
of X, for which there is at least one point on PoXo which is not
contained in ,A. Let U be the point on PoXo, which is nearest to
.Po and lying on the boundary of . Even if, in the neighbourhood

U, PoXo and the boundary of have a line-segment in common,
by a small displacement we can construct a line-segment PVY such
that
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(i) the segment PV is contained in ,, except V.
(ii) Vis the only boundary point of on PY, in a suffi--

ciently small neighbourbood of V.
Let B be a point on VY sufficiently near to V, then B is an

inner point of , and the center M of PB lying on PV is also an
inner point of . Therefore we can construct a line-segment AMC
completely interior to ,/, orthogonal to PMVBY and AM-----MC.
Such PB and AC build up a cross, and V is an inner point of its
convex hull, i.e. the rhombus ABCP. Rotating this cross around
M, we finally obtain a cross PB and AC completely interior to ,,/,
and having V as the inner point of its convex hull ABCP. This
means that V must be an inner point of ,, which is a contradic-
tion.

In the case for general n, when ,3 contains a cross, the section
of 3 by the plane H determined by the cross, satisfies the con-

dition of this theorem for n -2; therefore it is convex, Since
the plane H is chosen arbitrarily, the domain .3 has the property
that its section by any plane H intersecting to . is always convex.
It is evident that such ,3 is convex, and thus our theorem is
proved.

Since the base in Lemma 3 satisfies the condition described
in Theorem 3, it is convex. Therefore Lemma 2 and then Theorem
1 is completely proved.


