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47. Brownian Motions in a Lie Group.

By Kiyosi ITO.
Mathematical Institute, Nagoya University.
(Comm. by T. TAKAGI, M.J.A., Oct. 12, 1950.)

The notion of Brownian motions has been introduced by N.
Wiener [1] [2]° in the case of the real number space (or more
generally the n-space) and by P. Lévy [3] in the case of the circle.
We shall here extend this notion in the case of a general Lie
group.”

§ 1. Definition and fundamental theorems. Let G be an n-
dimensional Lie group. A random process «(f) in G is called to
be a right (left) inmvariant Brownian motion in G, if it satisfies the
following five conditions M, C, T, S and C*.

M. =(f) is a simple Markoff process; we denote the transition
probability law of =(f) with F(, p,s. E) i.e.

F(t: v, s, E) = P,{W(S)EE/W(t) = p} .

C. Kolmogoroff-Feller’s continuity condition [4] [5]. For any
neighbourhood U of p it holds that
lim 1 F(@p,s G—U) =0

83240 §—[

and the following limits exist (1 <14, < n)

o, p)=1lim - 1 J (@' —a) F (¢, 2,, 5, da),
2»i+08—7 v 0

Bi(t, p) = limo*"}’zf (@'~a) @' =) F (¢, 20, 5, o),
§>7+0 §—
U

where (¢°) is a local coordinate defined on U and (x;) is the coord-
inate of p.
T. temporal homogeneity. F(t,p,s, E) = F(t+r,p,s+, E).
S. spatial homogeneity.
right invariance F(t, p, s, E) = F(t, pr, s, Er).
(left invariance F(, p,s,E) = F(t,lp, s, E).)
C* continuity. Almost all sample motions® are continuous.

1) The numbers in [ ] correspond to those in the the references at the end
of this paper.

2) Prof. K. Yosida has obtained a similar result in making use of his operator-
theoretical method. See the preceding article.

3) In the analytical theory of probability a random motion is represented by
a motion depending on a probability parameter. Any motion for each parameter
value is called to be a sample motion.
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By a Brownian motion in G we understand a right invariant
one or a left invariant one. A both-sides invariant Brownian motion
is defined as a Brownian motion which is right invariant as well
as left invariant.

Now, put
(1.1) ,f(p)—hm——j (F(@)—f®))FE, p, s, dg) -

Then we see by C and T that D,f(p) is written as

_ ﬂf f ;
(1.1.a)  D.f(p) = a&'(p) (p)+ B“(zo)a ax,(p)’

for any bounded function f(p) of class C., where || BY(p)|| is a
symmetric non-negative-definite matrix by virtue of

(LLb)  &&B%p) = lirgoﬁ 5(&(#—903) Y B, %0, 5, d) =0,

namely that D is an elliptic differential operator in G independent
of £. Therefore we may eliminate ¢ and write simply as D. D is
called to be the generating operator of the Brownian motion =(t).

We shall here state several fundamental theorems.

Theorem 1. (Characterization of generating operators). Let
D be any elliptic differential operator defined for any bounded
function of class C.. Then the following three conditions are equi-
valent to each other.

(G. 1) D is a generating operator of a right (left) invariant
Brownian motion.

(G. 2) D commutes with any right (left) translation operator
R.(L)), where R,f(p) = f(pr) (L.f(p) = f(p)) -
(G. 3) D is expresgible in the form :

(1.2) D=AX, + % BY X.X;

where {X,} is a basis of the infinitesimal operators of left (right)
translations and A¢, BY are all real constants such that the matrix
|| BY|| is a symmetric non-negative-definite one.

Theorem 2. (A generalization of the Fokker-Planck equation
[6]). If we put

fs,0) = [fDF &, p,5,d0) ¢ <9)

f(q@) being a function of class C, which vanishes outsides of a

4) We shall eliminate the summation sign SV according to the usual rule of
tensor caluclus.
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compact set, then f{(s, p) satisfies the following partial differential
equation :

1.3) ”f; (s, ) = Df (s, D)
with the initial condition
(1.4) ft ) =f).

Theorem 8. (Uniqueness theorem). The transition probability
law of a Brownian motion is uniquely determined by its generat-
ing operator.

Theorem 4. (A condition for the both-sides invariance). A
necessary and sufficient condition that D be the generating operator
of a both-sides invariant Brownian motion is that D is expressible
in the form (2) such that {4’} and {B"} satisfies, besides the above-
gstated conditions,

(1.5) ACl; =0, BiCL+B'CE=0 (1L, kI<n).
Theoram 5. (A generalization of ‘¢ differential >’ property). Let
7(t) be a right (left) invariant Brownian motion in G. Then
w(s) w(t) " (w(t) T w(s))), i =1,2,...,m,

are independent G-valued random variables for £, <s, <t,< s, < ...
< tn<Sm

§2. Proof of the theorems.

Proof of Th. 1. We shall consider only the case of right
invariant Brownian motions. It is clear by the definition that (G.
1) implies (G. 2). We shall prove that (G. 2) implies (G. 3)». By
(G. 2) we have

Df(r) = R,Df(e) = DR,f(e) = Df,(e), where f,(p) =f(pr).

By taking an adequate coordinate (#°) around e¢ we may assume
that X, is expressed as

Xg(w) = ci(x) %@%‘w)’ cie) = 8, ai(e) = 0.

Then we have

1

Dg(e) = (A Xi'+~2-

B X; X;)g(e) ,

where

Ai= i ___]-_lec % 7 I
a’(e) 5 (e)axj(e),H—B(e)-

5) The author’s original proof was the same in essential as that stated here

but more complicated. He owes much to M. Kuranishi for the simplification of
the proof.
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|| BY|| is clearly a symmetric non-negative-definite matrix by the
definition.

Therefore Df.(e) is written as
Dfe) = (A*X, +§BﬁXJrj)fr(e) ,

where A’, BY satisfy the conditions stated in (G. 3). In consider-
ing that X, is an infinitesimal operators of left translations and
so commutative with R,, we obtain

Df(r) = (Ain+%B“'IQJQ)ﬁ(e) = (A'X, +—;-35in X)f().

Next, we shall prove that (G. 3) implies (G. 1). K. Yosida has
shown, in making use of his operator theoretical method, that (G. 3)
implies that D is the generating operator of a simple Markoff
process which satisfies M, C, T and S. By the use of a stochastic
differential equation [7] we shall here show that D is the generat-
ing operator of a right invariant Brownian motion, which satisfies
C* besides the above four conditions; this will mean that (G. 3)
implies (G. 1). We fix a canonical coordinate [7] (x*) around e, and
define a canonical coordinate around p by

(2.1 wy(qp) = 2°(9), 1Z1< n.

Then {(«}), p € G} is a canonical coordinate system [7]. By the above
argument we see by (G. 2) that

= (¢ 4 1
(2.2) Df(p) = (@ 50;‘;+ 23 ™ axp)ﬂp),

where a’, BY are all independent of p and || BY|| is a nonnegative
definite matrix. We fix a real matrix || b!|, such that

2.3) bibi = BY.

Now we shall consider an arbitrary loecal coordinate (x%) whose
coordinate neighbourhood contains p. For this coordinate we define

% 1 Ll
2.4 (@) = o/ , biw) = b
( ) (93) ' — 8% +— 2 b/c b, — o ja k(w) bka

Then we have

a(p)- L *’f )+ 2 BOHL) ;’ )

= e Y- "’f (p)+ 5 BB 3;” —(p) = D(p) .

1

Since Df(p) = (A'X, + BiX,X;)f(p) is independent of the special
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choice of the local coordinate, it is so with the left side of the
above equation. This implies that a’(x) is transformed in the follow-
ing manner :

y i — i( OF 1 k(o 0%
2.5.3) a7i(x) = &’ (x) o + 9 bl (x) bl (x) o

bj(x) is clearly transformed as follows by (2.4):

(2.5. b) B (x) = bi(w) %:3 .

Thus we may consider the following stochastic differential equation [7]:
(2.6) dg'(t) = aj(6(t)) dt+b5(6(t) ) dB'(t)

(&'(t)) being a local coordinate of a random motion =(t) in G.

In order to show the existence of the solution of this equation
we shall verify the conditions (8.8), (8.9) and (3.10) in Theorem
3.1in [7]. (8.9) and (3.10) are evident. We shall easily verify (3.8) in
considering that ai(x), bj(x) is determined by the same expression
around every point with respect to the above canonical coordinate
system by virtue of the definitions.

By Theorem 3.2 in [7] we see that the solution =(f) is a con-
tinuous simple Markoff process whose transition probability law
F(t, p, s, ) satifies

@D lim L ((F@~/ @) F, p,5,d0)

— it oy L i np
= a/(p) o (m)+ 5 b (p) bic (p) »

Thus we see that =(t) satisfies the conditions M, C,C* in §1. By
comparing the solution of (2.6) with the initial condition :

of -
P (p) = Df(p).

(2.8. a) w(t) =p
with the solution of the same equation with the initial condition :
(2.8.b) at+o)=0p

and in remembering the temporal homogeneity of (8'(¢)), we can
easily verify that =(f) is temporally homogeneous. In order to
show the spatial homogeneity we need only to remember that, if
7(7) is the solution of (2.6) with the initial eondition: =(f)=p, then
7*(7) = mw(7)r is the solution of (2.6) with =*(t) = pr.

Proof of Th. 2. By the right-invariance we see that

f(s, p) = jf (g-p)F'(¢, p, s, dg-p) = jf(qm)F(t, e, s,dq),

which implies that f(s, p) is a bounded funection of class C, in p.
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By the temporal homogeneity we have
fo+d,0)= [F@F(t,p, 5+4,dg
=“ F@F G, p, t+d, drF(E+4,r, s+ 4, dg)

[[r@F e, pt+a,anFa r,s do

I

= (76, P, v, t+4,dr
and so
F6+d, I1—f (5, 1) = [(s, )~ (6, D) (¢, 0, £+ 4, d)
and accordingly
lim LE*4, D=6, D) _ pee o

A>+0 A

Df(s, p) being continuous in s as is easily verified, we obtain (1.3)
from the above identity.

Proof of Th. 3. Let F\(t,p,s, E) and Fuy(¢t, p, s, E) be the transi-
tion probability law of the Brownian motions with the same generat-
ing operator D. We shall here prove that F, = F,. For thig it is
sufficient to show that the funections

fism) = [F@F L, p,5,d0), i = 1,2,

coincide with one another for any function f of class C. which
vanishes outsides of a compact set. Put

2.9) 9(s, p) = e™° (fi(8, p)—fu(s,D)) .

Then g(s, p) is the solution of the equation

(2.10) —;;y(s, p) = —o(s, p) + Dg(s, p)

with the initial condition :
(2.11) g(t,p) =0.

Since |fi(s, p) — fa(s, )| <2max |f(p) |, g(s, p) tends to 0 uni-
formly in p as s—o. When G is compact, g(s, p) takes the maximum
in s>t peG. When G is not compact (but loecally compact as a

Lie group), we also see that g(s, p) takes the maximum, in con-
sidering that

96, p) = ([fla-DIF\(t ¢, 5, do)— [ fla-DIFCt, ¢, 5, da))

tends to 0 uniformly in ¢t <s < ¢ (¢ being any assigned constant)
as p tends to the point at infinity of G. Let g(s,, p,) be the
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maximum. When s,=¢, we have g(s,, ) =0 by (2.11). When
s, > t, we have

g"; (80, po) = 0, Dolss, p0) < 0

in remembering the expression (2.2) of D. Therefore we see, by
virtue of (2.10), that g(s,, p) < 0. Thus we see that g(s, p) < g(s,
o) < 0. Similarly we obtain g(s, ) = 0 in congidering the minimum
of g(s, p). Consequently we have g(s, p) =0, i.e. fi(s,p) =fuls, D).

Proof of Th. 4. Let D be the generating operator of a both-
sides invariant Brownian motion. Then we see, by Theorem 1,
that D is expressible in the form (1.2) and commutative with each
X;. Therefore we have (Cj, = structural constants)

= AY[X,, Xi] +—;~ BYX,[X;, X.] + ;B[X XX,

= AICL X, + % (BYC}y + B" CL) X.X,

and so we obtain (1.5). Thus the mecessity is proved. By the
above argument, the sufficiency is also evident.

We may easily show Th. 5 by making use of the spatial
homogeineity of =(t).
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