203. On Potent Rings. I*

By Hidetoshi MARUBAYASHI College of General Education, Osaka University (Comm. by Kenjiro Shoda, M. J. A., Oct. 12, 1970)

A ring R is said to be (right) *potent* iff every nonzero closed right ideal A of R is potent, that is, A^n is not zero for all positive integer n. In [6], R. E. Johnson has investigated potent irreducible rings which are finite dimensional in the sense of Goldie [4], and obtained many interesting results. The aim of this paper is to generalize the Johnson's work [6] to the case of the rings with infinite dimensions.

1. Definitions and notations.

Let R be an associative ring. A right ideal I of R is called *closed* if it has no proper essential extensions in R as right R-modules. Clearly the concept of closed right ideals of R coincides with the one of complemented right ideals in the sense of Goldie [4]. A right ideal E of R is called large if R is an essential extension of E (in symbols; $E \subset R$). A ring R is said to be (right) locally uniform if any nonzero right ideal of R contain a nonzero uniform right ideal. A right ideal R is R is an essential extension of every nonzero right ideal contained in R. Clearly, if R is finite dimensional, then R is locally uniform. R is called R countably R is finite dimensional, then R is locally uniform. R is called R countably R is used for right (left) annihilator of a subset R of R.

The set $Z_r(R) = \{x \in R \mid x^r : \text{ large right ideal of } R\}$ is an ideal of the ring R, which is called the right singular ideal. If $Z_r(R) = 0$, then the each right ideal A has a unique maximal essential extension A^* in R. The set $L_r^*(R)(=L_r^*)$ of closed right ideals is a complete complemented modular lattice under the inclusion. If $\{C_i \mid i \in I\}$ is any collection of closed right ideals of R, then $\bigcup_{i \in I}^* C_i = (\sum_{i \in I} C_i)^*$. $(J_r^*; \cap, \cup)$ will denote the lattice of all annihilator right ideals of R. Then it is easily seen that $J_r^* \subseteq L_r^*$. We note that the lattice J_r^* is not usually a sublattice of L_r^* , although intersections are set-theoretic in both lattices. For convenience, we let $L_{r2}^* = L_r^* \cap L_2$ and $J_{r2}^* = J_r^* \cap L_2$, where L_2 is the set of two-sided ideals of R. Corresponding left properties of a ring R are indicated by replacing each "r" by an "l". If R is right locally uniform, then L_r^* is an atomic lattice, and $A \in L_r^*$ is an atom if and only if A is a closed uniform right ideal. Following R. E. Johnson we call

^{*)} Dedicated to Professor Keizo Asano for the celebration of his sixtieth birthday.

a ring R a (right) potent ring (P-ring) if every nonzero closed right ideal of R is potent. We say that uniform right ideals A and B are similar (in symbols; $A \sim B$) iff A and B contian mutually isomorphic nonzero right ideals A' and B' respectively. A ring R said to be (right) irreducible iff R is right locally uniform and $A \sim B$ for all uniform right ideals A and B of R. A right locally uniform irreducible ring with $Z_r(R) = 0$ is called here an I-ring. An I-ring which is also a P-ring will be called a PI-ring. We note that a ring R is a PI-ring if and only if R is a PI-ring in the sense of R. E. Johnson [6]. A ring R is said to be residue-finite if the following condition is satisfied:

The factor ring R/T is finite dimensional as a right R-module for any nonzero $T \in L_{r2}^*$.

If R is finite dimensional, then evidently R is residue-finite. If R is a prime ring, then R is residue-finite, because $L_{r2}^* = \{0, R\}$. A PI-ring which is countably dimensional will be called a CPI-ring. Let M be a right R-module. If M is an n-dimensional in the sense of Goldie, then we write $n = \dim_R M$.

Concerning the terminologies we refer to [4] and [6].

2. Residue-finite CPI-rings.

Theorem 1. If R is a residue-finite CPI-ring, then the following properties hold:

- (1) $L_{r2}^* = J_{r2}^* = \{A^r \mid A \in L_r^* : atom\}.$
- (2) $L_{r_2}^*$ is a chain and there exist the following two types:
- (A): $R = T_0 \supset T_1 \supset T_2 \supset \cdots$ and $\bigcup_{p=0}^{\infty} T_p = 0$.
- (B): There exists an integer p such that $R = T_0 \supset T_1 \supset T_2 \supset \cdots \supset T_p \supset T_{p+1} = 0$.
- (3) For each nonzero $T_p \in L_{r2}^*$, there exists an independent set $\{A_1, \dots, A_n\}$ of atoms of L_r^* such that $A_1 \bigcup * \dots \bigcup * A_n \bigcup * T_p = T_{p-1}$ and $(A_1 \bigcup * \dots \bigcup * A_n) \cap T_p = 0$.
- (4) If A is an atom of L_r^* , then $A \subseteq T_p$ and $A \not\subseteq T_{p+1}$ if and only if $A^r = T_{p+1}$.

The lattices J_r^* and J_l^* are dual isomorpic under the corresponding $A \rightarrow A^l$, $A \in J_r^*$. Hence if J_{r2}^* consists of $R = T_0 \supset T_1 \supset T_2 \supset \cdots$, $\bigcap_{p=0}^{\infty} T_p = 0$ or $R = T_0 \supset T_1 \supset T_2 \supset \cdots \supset T_p \supset T_{p+1} = 0$, then J_{l2}^* consists of $0 = T_0^l \subset T_1^l \subset T_2^l \subset \cdots$, $\bigcup_{p=0}^{\infty} T_p^l = R$ or $0 = T_0^l \subset T_1^l \subset T_2^l \subset \cdots \subset T_{p+1}^l = R$, respectively.

Lemma 1. Let $J_{12}^* = \{T_0^l, T_1^l, T_2^l, \cdots\}$. Then:

- (1) For each $T_p^l \neq R$, there exists a potent atom $B \in J_l^*$ such that $B \subseteq T_{p+1}^l$ and $B \cap T_p^l = 0$.
- (2) If B is a potent atom of J_l^* , then $B \subseteq T_{p+1}^l$ and $B \not\subseteq T_p^l$ if and only if $B^l = T_p^l$.

By [5], the lattice J_i^* is an upper semi-modular lattice. Hence for each $B \in J_i^*$ such that the interval [0, B] is a finite length, we can define, by Theorem 14 of [1], the dimension of B as the maximal length of chains

between 0 and B. If the dimension of B is n, then we write $n = \dim B$. Lemma 2. (1) $\dim_R(R/T_p) = d_p$ if and only if $\dim T_p^i = d_p$.

(2) For each nonzero T_p , there exists an independent set $\{B_i\}_{i=d_{p-1}+1}^{d_p}$ of potent atoms of J_i^* such that

$$T_p^l = T_{p-1}^l \cup (B_{d_{p-1}+1} \cup \cdots \cup B_{d_p}) \text{ and } (B_{d_{p-1}+1} \cup \cdots \cup B_{d_p}) \cap T_{p-1}^l = 0.$$

Let $\dim_R(R/T_p) = d_p$ for each nonzero $T_p \in L_{r_2}^*$. Then evidently $\dim_R(T_{p-1}/T_p) = d_p - d_{p-1}$. If R satisfies (A) in Theorem 1, we shall call the ring R is of type (A), and $(d_1, d_2 - d_1, \cdots, d_p - d_{p-1}, \cdots)$ is called a set of block numbers of R.

If R satisfies (B) in Theorem 1, we shall call the ring R is of type (B), and $(d_1, d_2-d_1, \dots, d_p-d_{p-1}, \infty)$ is called a set of block numbers of R.

Let R be a ring with $Z_r(R)=0$. As is well known the maximal right quotient ring \hat{R} of R is right R-injective and is a right self-injective (von Neumann) regular ring (see [2]). Let L be an atomic lattice with 1. A set $\{a_i\}$ of atoms of L is independent iff $a_i \cap (\bigcup_{j \neq i} a_j) = 0$ for each i. An independent set $\{a_i\}$ of atoms of L is called a basis of L if $\bigcup_i a_i = 1$.

In order to make further progress we need the following definition: Let R be a residue-finite PI- ring. R is said to be *complemented* with respect to L_{r2}^* if there exists a set $\{B_i\}$ of potent atoms of J_i^* such that

- (a) $\{B_i\}$ satisfies the condition (2) in Lemma 2, and
- (b) For each nonzero T_p , $T_p \cup {}^*T_p^c = R$ and $T_p \cap T_p^c = 0$, where $T_p^c = (\bigcup_{j>d_p} B_j)^r$. In addition, if $\bigcup_p^* T_p^c = R$, then R is said to be s-complemented with respect to $L_{r_2}^*$.

The following are examples of rings which are s-complemented with respect to L_{r2}^* .

- (i) R is an FPI-ring in the sense of [6].
- (ii) Let R be a residue-finite CPI-ring and let \hat{R} be the maximal right quotient ring of R. If \hat{R} is a left quotient ring of R, then R is s-complemented with respect to L_{r2}^* (see [7]).
- (iii) Let F be a division ring. If A and B are subsets of F, then we denote by AB^{-1} the set $\{ab^{-1}|a\in A,b\in B,b\neq 0\}$. Let ω be the countable ordinal number. We denote by $(F)_{\omega}$ the ring of all columnfinite $\omega\times\omega$ matrices over F. Let F_{ij} be additive subgroups of F such that $F_{ij}F_{jk}\subseteq F_{jk}(i,j,k=1,2,\cdots)$. Let $S=\{a\in (F)_{\omega}|a=(a_{ij}),a_{ij}\in F_{ij}\}$. Clearly S is a subring of R. The ring S will be called a T-ring (triangular-block matrix ring) with type (A) in $(F)_{\omega}$ iff there exist integers $0=d_0< d_1< d_2<\cdots< d_n<\cdots$ such that $F_{ij}\neq 0$ iff $i>d_p$ and $d_p< j\leq d_{p+1}(p=0,1,2,\cdots)$. If $F_{11}F_{11}^{-1}=F$ and $F_{jj}F_{kj}^{-1}=F(2\leq j< k)$, then S is s-complemented with respect to L_{r2}^* and a residue-finite CPI-ring

with type (A) (see [7], Theorem 2).

Let R be s-complemented with respect to $L_{r_2}^*$ with type (A) and let $\{B_i\}$ be potent atoms of J_i^* which satisfies the conditions (a) and (b). Now we set $A_i = (\bigcup_{j \neq i} B_j)^r$. Then the following lemma holds.

Lemma 3. (1) $\{A_i\}$ and $\{B_i\}$ are independent atoms of L_r^* and J_i^* respectively.

- (2) For each p, $T_{p-1} = T_p \cup (A_{d_{p-1}+1} \cup \cdots \cup A_{d_p})$ and $T_p \cap (A_{d_{p-1}+1} \cup \cdots \cup A_{d_p}) = 0$.
 - (3) $\bigcup_{i=1}^{\infty} A_{i} = R$.
 - (4) $B_i = (\bigcup_{j \neq i} A_j)^l$.

Now, we can summarize the above-mentioned results as follows:

Theorem 2. Let R be a CPI-ring with type (A) and let $(d_1, d_2, \dots, d_n, \dots)$ be the set of block numbers of R. If R is s-complemented with respect to $L_{r_2}^*$, then there exist potent atomic bases $\{B_1, B_2, \dots, B_n, \dots\}$ for J_t^* and $\{A_1, A_2, \dots, A_n, \dots\}$ for L_r^* such that:

- (1) $A_i = (\bigcup_{j \neq i} B_j)^r$ and $B_i = (\bigcup_{j \neq i} A_j)^l$, $(i=1,2,\cdots)$.
- (2) $J_{r_2}^* = L_{r_2}^* = \{A_i^r | i = 1, 2, \dots\}, J_{i_2}^* = \{B_i^t | i = 1, 2, \dots\}.$
- (3) $A_1^r \ge A_2^r \ge \cdots \ge A_n^r \ge \cdots$, $\bigcup_{n=1}^{\infty} A_n^r = 0$ and $0 = B_1^l \le B_2^l \le \cdots \le B_n^l$ $\le \cdots$, $\bigcup_{n=1}^{\infty} B_n^l = R$.
- (4) $A_i^r = A_j^r$ and $B_i^l = B_j^l$ iff $d_0 + d_1 + \cdots + d_p < i$ and $j \le d_0 + d_1 + \cdots + d_{p+1}$ for some p, where $d_0 = 0$.
- (5) $A_iB_j \neq 0 \text{ iff } i > d_0 + \cdots + d_p \text{ and } d_0 + \cdots + d_p < j \leq d_0 + \cdots + d_{p+1}$ for some p.

References

- [1] G. Birkhoff: Lattice Theory. Amer. Math. Soc. Colloq. Publ., 25, rev. ed., Amer. Math. Soc., Providence, R.I. (1948).
- [2] C. Faith: Lectures on Injective Modules and Quotient Rings. Springer-Verlag, New-York (1967).
- [3] A. W. Goldie: Rings with Maximum Condition (Yale University).
- [4] —: Semi-prime rings with maximum condition. Proc. London Math. Soc., 10, 201-220 (1960).
- [5] R. E. Johnson: Prime matrix rings. Proc. Amer. Math. Soc., 16, 1099-1205 (1965).
- [6] —: Potent rings. Trans. Amer. Math. Soc., 119, 524-534 (1965).
- [7] H. Marubayashi: On potent rings. II. Proc. Japan Acad., 46, 897-900 (1970).