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155, Dirichlet Problem on Riemann Surfaces. I

(Correspondence of Boundaries)

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University
(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1954)

Let R be an open abstract Riemann surface and let {R,} (n=
1, 2, ...) be an exhaustion with compact relative boundaries {oR,}.V
Then R—R, is composed of a finite number of disjoint non compact
subsurfaces {Gi} (=1, 2, ..., .0 n=1, 2,...). Let {G:} be a

i

sequence of non compact surfaces such that Gi:OGY,, ..., NGi=0.
Two sequences {Gi} and {G%} are called equivalent, if and %nly if,
for any given number m, there exists a number % such that GLDOG:
and vice versa. We correspond an ideal point (component) to a class
of equivalent sequences and denote the set of all ideal boundary
points by B. A topology is introduced on £+ B by the completion
of B. It is clear that R+ B is closed, compact and that B is totally
disconnected. This topology restricted in R is homeomorphic to the
original topology. We call this topology A-topology and denote
R+B by R¥®

Let R be an abstract Riemann surface given as a covering sur-
face over B. We define the distance of two points p, and p, of R
by inf(8(p,, »,)), where &(p,, p,) is the diameter of the projection of
a curve on R connecting p, and p,, and define the accessible boundary
points of B by the completion of B with respect to this metric.
When a continuous curve L on R converges to the boundary of R
and the projection of L on R tends to a point of B*, we say that
L determines an accessible boundary point (abbreviated to A.B.P.).
It is well known that these two definitions are equivalent.

In this paper we suppose that R is a null-boundary Riemann
surface.

Lemma 1.1. Let R be a covering surface over R, let z2=f(z)
(e R, z¢R) be the mapping function from R into R and let L be a
curve on R which determines an A.B.P. whose projection on B is z,.
Suppose that R does not cover a subset of positive capacity of R.
We map the universal covering surface R> conformally onto the unit
circle U::|él<1 by é=p(R). Lf the image I of L in U, tends to a
point &, on §|=1, then the composed function z=f(p *(§)) has the

1) Thought this paper, we denote a relative boundary of G by 9G.
2) It is clear that a metric introduced in A-topology.
3) In this case, it is proved that [ does not osciliate.
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same limit z,, when & tends to &, along any Stolz’s path.

Proof. Let {V,(z,)} be a sequence of neighbourhoods of z, with
compact relative boundaries {9V,(2,)} such that V,(2)DV,..(2,)---
N Vu(2,)=0 and let R, be a compact disc of R such that the boundary
of the projection of R has positive eapacity in £,. Define a super
harmonic function w,(2) such that ,(2) is harmonic in {(E—R,— V,(2,)}
U{proj (R)N Ry}, ®.(2,)=0 on the boundary of proj(R) contained in

R, w,(2)=M, on OR,+ V,(z,) and 5 a[,, o ds=1. Since R is a

null-boundary Riemann surface, o,(2) is uniquely determined and
lim M,=eo. We denote by 4. the domain: (§—&(<I—r, (arg(é

IEOH< ;T —3& and denote the end part of I outside of [z|=7 by {,.

Then we have

wn(f(s))_z_ansl on AEKI‘,(S) nz% (1)
where 28>0 and ¢, is the minimal number such that SU,) € Vi (2).
If f(§) did not have limit 2, in 4., there would exist a sequence
{&} such that lim §,=¢§,:& € 4,5 and a number 7, and a sequence
{&/} such that f(&,,) ¢ V,(?); '=1,. Therefore there exists a number
N and ¢ such that ’

o f(EN=N: "=1, n=n,. (2)
From (1) and (2), we have N=w,(f(5,)=M,28 : lim M=, which
is a contradiction. o

If the A.B.P. lies on R, our assertion is trivial. From this
lemma, we can deduce the following.

Lemma 1.2. Under the same conditions as those of the lemma 1.1,
let E. be a set on |&|=1. If the cluster set of z=f(&) on E., when &
tends to points of E., is a set of capacity zero, then E. is a set of
linear measure zero.

Proof. From Lemma 1.1, we can suppose that f(€) has cluster
set in E, along a Stolz’s path. We denote by E’ a closed set of
points p of E' such that A& tends uniformly when & tends to p
along a Stolz’s path. Then f(E')CE is also closed. Let {V,} be a
sequence with compact relative boundaries {0V,} such that V,DV,,,,

NV.=f(E), where V is the closure of V. Denote by w,(z) a con-

tinuous super-harmonic funection such that w,(2) is harmonic in (R

—£&,—V.)U (B, N proj R), w.(2)=0 on proj RUR,, w,2)=M, on oV,

+ 7V, and 1 f P0n(@) g1, Then lim M,=c. Consider o,(z) on
20r on »

U. then we have from the super-harmonicity of w,(2) that lim w,(2)

=oo. This is absurd.
An extension of Fatou’s theorem
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Lemma 1.8. Let R be a null-boundary Riemann surface, let O,
o be two fixed points of R and let a be a point of R. Denote by
U,2) a harmonic function such that

U,(2)+1og 2=0 in the neighbourhood of o,
U z)—logz 18 harmonic in the neighbourhood of a.

Then U,z) is determined uniquely. Put U,*(2)=0, of U,2)=0
and U*(2)=U.®), @f Ud2)>0. Then

Ua+ (g) —d— Ua+(Q)§ UQ+(g)s UQ+(§)§ Ua+(§) + Ua+(0) + d;
where d depends on O and < only.

Proof. Denote by D, the domain such that 0=>Uy®): z¢€ D,
and by 9D, its relative boundary. Put WV(a, 2)=U,*(z)— Uy*(2)
—U,*(0). Then there are four cases as follows:

1) The case when a¢ Dy, 2¢ D,. In this case we have U,*(2)
=Un®), U.*(0)=U,0) and V(a, 2)=U,*()—Us(z)—UL0).

2) The case when a ¢ D,, 2¢D,. In this case we have U,"(z)
=Uo(2), U,*(0)=0 and V(a, 2)=U,*@)—Uy(2).

8) The case when a ¢ D,, z¢Do. In this case we have Uy*(2)=0,

U (Q)=U,0) and V(a, 2)=U.(2)—UO).

4) The case when a € D, z€¢ D, In this case we have U,*(2)
=U,"(0)=0 and V(a, 2)=U,(2).

Since B has a null-boundary and moreover V{(a, 2) is bounded from

above and is sub-harmonic with respect to 2z for fixed ¢ and sub-

harmonic with respect to a for fixed 2z respectively, V(a, 2) takes its

maximum d="U,(z")=U,(a') at some points &' and 2’ on 9D,.

In such a case U,O)="Uy(a")=Uyz)=0, hence

Via, 2)<d: a,2¢R.
Therefore, U,*(2)—d—U,"(0)<Uy*(2).

We can prove the latter part similarly.

Let R be a covering surface of positive boundary Riemann
surface over R and let z=f(2): z ¢ B, z¢ R be the mapping function.
We denote by G,(z, p) the Green’s function of R, with pole at p and
let h,(2, p) be its conjugate. Let a;, b, the points of R where
J(a)=0, f(b)=c respectively. Then we have

Us )= - [ Udf(r,e )0, + 3 G, b,)

20 Z

_g Gn(z, a'v)+10g ]clc]7
where z,=e "=y ¢ @G (2, O) is the Green’s function of R with
pole at O, and ¢, is the first non vanishing coefficient of the expan-
sion of f(2,) with respect to the local parameter defined in the
neighbourhood of O.

Put
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m(r'n ’ f_ a’):fzﬂUa-'-(af(rnemn)dgm

N(r., f—a):fr” n(e, a)';%(o, @) dt.

We have, by lemma 1.3.
(70, f—0)—m(7y, 2)<Up*(a)+d,
m(’rn ’ a) +N(rn s a):m(rn s _‘7;’.)+N('rn ’ _d_".) +§0(7',,,)
where
P(rm)=Ug(a) +d +[log el
If T(r, _cg)——-lirrbn (N(r,, =)+m(r,, =)<, we say that 2=,(2) is a

covering of bounded type.

Theorem 1.1. We map the universal covering surface R> of R
onto U, : |§]<1 conformally by E=p2) such that O=¢(0). If 2=Ff(z)
18 @ covering of bounded type, then the composed function z=z(§)
from U. to R has ongular limits almost everywhere on |&]=1 and
there exists a set E of measure 2w on |&=1 such that every Stolz’s
path terminating ot every point of E determines an A.B.P. of R.

Proof. If p is the equilibrium distribution of unit-mass on a

set H of positive capacity on R, we have T(r)= f N(r, 2)du(z)+0(1),

and T(r) is finite if and only if N(r, 2) is ﬁnite};verywhere. As to
the mapping from R> to U., we can say that the universal covering
surface R, of R, is mapped onto a simply connected domain .D,,
containing §=0, and situated in |§]<1, and that a point a; of R
corresponds to a system of equivalent points {a;;} (=1, 2,...): ay
eU.. Let G.p(§, ay) and G,(§, a;;) be the Green’s function of .D,
and |§]<r respectively. Then we have

Gz, a’i):; GED,,,(E > Q).

Since the Green’s function is an increasing function of the domain,
and since there exists a number » such that .D, contains [§]<7 for
given r, we have

G(z, a)=lim G,(2, @)= >} G,.(§, a;).

This implies that the composed mapping z=f(p~'(£)) is also of bound-
ed type. Put W(z)=exp(Uy(z)+1Ve(?)), where Vy(z) is the conjugate
function of Uy(z). A small circle |[W|<8 corresponds to a disc D
of R, whence we have N(r, ay)< o for a,, in D. Hence the analytic
function exp(Us(f(p '(€))+tVo(fp X (£))=W(E) is a function of
bounded type in U.. Accordingly W(£) has angular limits almost
everywhere on [§]=1 by Fatouw’s theorem. Since the Green’s func-
tion G(2, O) of R has angular limit zero almost everywhere on |§|=1,
there exists a set & on |§]=1 such that W(&) has angular limits and



No. 8] Dirichlet Problem on Riemann Surfaces. I 735

G(z, O) has angular limits zero. Let [ be a Stolz’s path terminating
at & ¢ E such that W(¢) has limit W, along [ when ¢ tends to &,.
We denote by L and L the images of / on R and on R respectively.
We shall prove that L determines an A.B.P.

We see at once that L tends to the boundary of R, because
G(z, O) tends to zero along L. Assume that L does not converge
to a point of R*, then we can find two points p, and p, ¢ B* and two

sequences of points {¢°,} and {¢%;} on L such that lim ¢’=p, and
g g g =l
lim ¢",=p,. Accordingly we can find a point P, € R and a neighbour-
hood V(p,) such that there exists a sequence of points ¢ on subarc
4, of L which tends to p,, where 4 is the part of L contained in
V(p,) and situated between ¢ and ¢i. Let WY(2): z=f(p '(§)) be
the branch of W(¢) corresponding to 4,. Since |W¥(2)|=exp Uy?),
without loss of generality we can suppose that {W%(z)} is bounded
in V(p,). Thus {W"(2)} is a normal family. Choose a subsequence

{W¥(2)} which converges. Let W>(2) be its limit function. Since
W¥(z) converges to W, on 4, when ¢"—c, W()=W,. On the
other hand |W'()|l={W()| for every i and W(2) =const., which
is a contradiction.

Corollary.” Let R be a covering surface over R. If there exists
a set E of positive capacity on R such that every point of E is covered
by R a finite number of times, then z=f(p ' (§)) has angular limits
almost everywhere |§]=1.

In fact, we can easily deduce that in this case T(r, ) is finite.
Corollary. Let R be a covering surface over R. If R is a

covering of bounded type over R, then R is also of bounded type over R.
Proof. There exists a system of points {a;} (=1, 2,...) of

R which lie on a point @; of B. Since > Gi®, a;;)=G(, a;), we have
at once ’
T(R, N=T(r, =),

where Gu(3, a;) and G(z, @) are Green’s functions of £ and R
respectively.

4) This corollary has been proved by M. Ohtsuka. See ¢ On a covering surface
over an abstract Riemann surface”, Nagoya Math. Jour., 4, 109-118 (1952).



