No. 8] 731

155. Dirichlet Problem on Riemann Surfaces. I (Correspondence of Boundaries)

By Zenjiro KURAMOCHI

Mathematical Institute, Osaka University (Comm. by K. Kunugi, M.J.A., Oct. 12, 1954)

Let \underline{R} be an open abstract Riemann surface and let $\{\underline{R}_n\}$ $(n=1, 2, \ldots)$ be an exhaustion with compact relative boundaries $\{\partial \underline{R}_n\}^{1}$. Then $\underline{R} - \underline{R}_n$ is composed of a finite number of disjoint non compact subsurfaces $\{G_n^i\}$ $(i=1, 2, \ldots, i_n; n=1, 2, \ldots)$. Let $\{G_n^i\}$ be a sequence of non compact surfaces such that $G_n^i \supseteq G_{n+1}^{i'} \ldots, \bigcap_n G_n^i = 0$. Two sequences $\{G_n^i\}$ and $\{G_m^{i'}\}$ are called equivalent, if and only if, for any given number m, there exists a number n such that $G_m^{i'} \supseteq G_n^i$ and vice versa. We correspond an ideal point (component) to a class of equivalent sequences and denote the set of all ideal boundary points by B. A topology is introduced on $\underline{R} + B$ by the completion of \underline{R} . It is clear that $\underline{R} + B$ is closed, compact and that B is totally disconnected. This topology restricted in \underline{R} is homeomorphic to the original topology. We call this topology A-topology and denote R + B by $R^{*,2}$.

Let R be an abstract Riemann surface given as a covering surface over \underline{R} . We define the distance of two points p_1 and p_2 of R by $\inf(\delta(p_1, p_2))$, where $\delta(p_1, p_2)$ is the diameter of the projection of a curve on R connecting p_1 and p_2 , and define the accessible boundary points of R by the completion of R with respect to this metric. When a continuous curve L on R converges to the boundary of R and the projection of L on R tends to a point of R, we say that L determines an accessible boundary point (abbreviated to A.B.P.). It is well known that these two definitions are equivalent.

In this paper we suppose that \underline{R} is a null-boundary Riemann surface.

Lemma 1.1. Let R be a covering surface over \underline{R} , let $\underline{z} = f(z)$ ($\underline{z} \in \underline{R}$, $z \in R$) be the mapping function from R into \underline{R} and let L be a curve on R which determines an A.B.P. whose projection on B is \underline{z}_0 . Suppose that R does not cover a subset of positive capacity of R. We map the universal covering surface R^{∞} conformally onto the unit circle U_{ξ} : $|\xi| < 1$ by $\xi = \varphi(z)$. If the image $l^{\mathfrak{F}}$ of L in U_{ξ} tends to a point ξ_0 on $|\xi| = 1$, then the composed function $\underline{z} = f(\varphi^{-1}(\xi))$ has the

- 1) Thought this paper, we denote a relative boundary of G by ∂G .
- 2) It is clear that a metric introduced in A-topology.
- 3) In this case, it is proved that l does not osciliate.

same limit \underline{z}_0 , when ξ tends to ξ_0 along any Stolz's path.

Proof. Let $\{V_n(\underline{z_0})\}$ be a sequence of neighbourhoods of $\underline{z_0}$ with compact relative boundaries $\{\partial V_n(\underline{z}_0)\}$ such that $V_n(\underline{z}_0) \supset V_{n+1}(\underline{z}_0) \cdots$ $\cap V_n(\underline{z}_0) = 0$ and let \underline{R}_0 be a compact disc of \underline{R} such that the boundary of the projection of R has positive capacity in \underline{R}_0 . Define a super harmonic function $\omega_n(\underline{z})$ such that $\omega_n(\underline{z})$ is harmonic in $\{(\underline{R} - \underline{R}_0 - V_n(\underline{z}_0))\}$ $\bigcup \{\operatorname{proj}(R) \cap \underline{R}_0\}, \ \omega_n(\underline{z}_0) = 0 \ \text{on the boundary of } \operatorname{proj}(R) \ \text{contained in}$ \underline{R}_{0} , $\omega_{n}(\underline{z}) = M_{n}$ on $\partial \underline{R}_{n} + V_{n}(\underline{z}_{0})$ and $\frac{1}{2\pi} \int_{\partial R_{n}} \frac{\partial \omega_{n}(\underline{z})}{\partial n} ds = 1$. Since \underline{R} is a

null-boundary Riemann surface, $\omega_n(z)$ is uniquely determined and $\lim M_n = \infty. \quad \text{We denote by } \Delta_{\xi,\tau,\delta} \ \text{the domain: } |\xi - \xi_0| < 1 - r, \ |\text{arg}|\xi$ $-\xi_0 || < \frac{\pi}{2} - \delta$ and denote the end part of l outside of |z| = r by l_r . Then we have

$$\omega_n(f(\xi)) \ge M_n \lambda \delta' \text{ on } \Delta_{\xi, \gamma, \delta}, \quad n \ge i_0$$
 (1)

where $\lambda\delta'>0$ and i_0 is the minimal number such that $f(l_r)\in V_{i_0}(\underline{z})$. If $f(\xi)$ did not have limit \underline{z}_0 in $\Delta_{\xi,\tau,\delta}$, there would exist a sequence $\{\xi_i\}$ such that $\lim \xi_i = \xi_0 : \xi_i \in \Delta_{\xi, \tau, \delta}$ and a number n_0 and a sequence $\{\xi_{i'}\}$ such that $f(\xi_{i'}) \notin V_{n_n}(z); \ i' {\geq} i_0.$ Therefore there exists a number N and i' such that

$$\omega_n(f(\xi_{t''})) \leq N: \quad i'' \geq i', \quad n \geq n_o.$$

is a contradiction.

If the A.B.P. lies on \underline{R} , our assertion is trivial. From this lemma, we can deduce the following.

Lemma 1.2. Under the same conditions as those of the lemma 1.1, let E_{ε} be a set on $|\xi| = 1$. If the cluster set of $\underline{z} = f(\xi)$ on E_{ε} , when ξ tends to points of E_{ξ} , is a set of capacity zero, then E_{ξ} is a set of linear measure zero.

Proof. From Lemma 1.1, we can suppose that $f(\xi)$ has cluster set in E, along a Stolz's path. We denote by E' a closed set of points p of E' such that $f(\xi)$ tends uniformly when ξ tends to palong a Stolz's path. Then $f(E') \subset E$ is also closed. Let $\{V_n\}$ be a sequence with compact relative boundaries $\{\partial V_n\}$ such that $V_n \supset V_{n+1}$, $\cap \overline{V}_n {=} f(E')$, where \overline{V} is the closure of V. Denote by $\omega_n(\underline{z})$ a continuous super-harmonic function such that $\omega_n(\underline{z})$ is harmonic in (\underline{R}) $-\underline{R}_{\scriptscriptstyle 0}\!-V_{\scriptscriptstyle n}) \cup (\underline{R}_{\scriptscriptstyle 0} \cap \operatorname{proj} R)$, $\omega_{\scriptscriptstyle n}\!(\underline{z})\!=\!0$ on $\operatorname{proj} R \cup \underline{R}_{\scriptscriptstyle 0}$, $\omega_{\scriptscriptstyle n}\!(\underline{z})\!=\!M_{\scriptscriptstyle n}$ on $\partial V_{\scriptscriptstyle n}$ $+V_n$ and $\frac{1}{2\pi}\int \frac{\partial \omega_n(\underline{z})}{\partial n}\,ds$ =1. Then $\lim_n M_n = \infty$. Consider $\omega_n(\underline{z})$ on U_{ε} then we have from the super-harmonicity of $\omega_n(\underline{z})$ that $\lim \omega_n(\underline{z})$ $\equiv \infty$. This is absurd.

An extension of Fatou's theorem

Lemma 1.3. Let \underline{R} be a null-boundary Riemann surface, let \underline{O} , $\underline{\infty}$ be two fixed points of \underline{R} and let a be a point of \underline{R} . Denote by $U_a(\underline{z})$ a harmonic function such that

 $U_a(\underline{z}) + \log \underline{z} = 0$ in the neighbourhood of $\underline{\infty}$,

 $U_a(z) - \log z$ is harmonic in the neighbourhood of a.

Then $U_a(\underline{z})$ is determined uniquely. Put $U_a^+(\underline{z}) \equiv 0$, if $U_a(\underline{z}) \leq 0$ and $U_a^+(\underline{z}) = U_a(\underline{z})$, if $U_a(\underline{z}) > 0$. Then

 $\begin{array}{cccc} U_a{}^+(\underline{z})-d-U_a{}^+(\underline{O}){\leqq}U_{\underline{O}}{}^+(\underline{z}), & U_{\underline{O}}{}^+(\underline{z}){\leqq}U_a{}^+(\underline{z})+U_a{}^+(O)+d, \\ where \ d \ depends \ on \ O \ and \ \infty \ only. \end{array}$

Proof. Denote by $D_{\underline{\varrho}}$ the domain such that $0 \ge U_{\underline{\varrho}}(\underline{z})$: $z \in D_{\underline{\varrho}}$ and by $\partial D_{\underline{\varrho}}$ its relative boundary. Put $V(a,\underline{z}) = U_a^+(\underline{z}) - U_{\underline{\varrho}}^+(\underline{z}) - U_a^-(\underline{\varrho})$. Then there are four cases as follows:

- 1) The case when $a \notin D_{\varrho}$, $\underline{z} \notin D_{\varrho}$. In this case we have $U_{\varrho}^{+}(\underline{z}) = U_{\varrho}(\underline{z})$, $U_{a}^{+}(\underline{Q}) = U_{a}(\underline{Q})$ and $V(a, \underline{z}) = U_{a}^{+}(\underline{z}) U_{\varrho}(\underline{z}) U_{\varrho}(\underline{Q})$.
- 2) The case when $a \in D_{\underline{o}}$, $\underline{z} \notin D_{\underline{o}}$. In this case we have $U_{\underline{o}}^+(\underline{z}) = U_{\underline{o}}(z)$, $U_a^+(\underline{O}) = 0$ and $V(a, \underline{z}) = U_a^+(\underline{z}) U_o(\underline{z})$.
- 3) The case when $a \notin D_{\underline{o}}$, $\underline{z} \in D_{\underline{o}}$. In this case we have $U_{\underline{o}}^{+}(\underline{z}) = 0$, $U_{a}^{+}(\underline{O}) = U_{a}(\underline{O})$ and $V(a, \underline{z}) = U_{a}(\underline{z}) U_{a}(\underline{O})$.
- 4) The case when $a \in D_{\underline{o}}$, $z \in D_{\underline{o}}$. In this case we have $U_{\underline{o}}^{+}(\underline{z}) = U_{a}^{+}(\underline{O}) = 0$ and $V(a, \underline{z}) = U_{a}(z)$.

Since \underline{R} has a null-boundary and moreover $V(a, \underline{z})$ is bounded from above and is sub-harmonic with respect to \underline{z} for fixed a and sub-harmonic with respect to a for fixed \underline{z} respectively, $V(a, \underline{z})$ takes its maximum $d = U_{a'}(\underline{z}') = U_{z'}(a')$ at some points a' and \underline{z}' on ∂D_o .

In such a case $U_a(\underline{O}) = U_{\underline{O}}(a') = U_{\underline{O}}(\underline{z}) = 0$, hence

$$V(a, z) \leq d$$
: $a, z \in R$.

Therefore, $U_a^+(\underline{z}) - d - U_a^+(\underline{O}) \leq U_{\varrho}^+(\underline{z})$.

We can prove the latter part similarly.

Let R be a covering surface of positive boundary Riemann surface over \underline{R} and let $\underline{z} = f(z)$: $\underline{z} \in \underline{R}$, $z \in R$ be the mapping function. We denote by $G_n(z, p)$ the Green's function of R_n with pole at p and let $h_n(z, p)$ be its conjugate. Let a_i , b_i the points of R where $f(a_i) = \underline{O}$, $f(b_i) = \underline{\infty}$ respectively. Then we have

$$egin{align} U_{m{arrho}'}f(z_n)) =& rac{1}{2\pi} \int_0^{2\pi} U_{m{arrho}}(f(r_n e^{i heta_n}) d heta_n + \sum_{
u} G_n(z,\; b_
u) \ - \sum_{
u} G_n(z,\; a_
u) + \log\; |c_k|, \end{align}$$

where $z_n = e^{-G_n - ih_n} = r_n e^{in_n}$, $G_n(z, O)$ is the Green's function of R with pole at O, and c_k is the first non vanishing coefficient of the expansion of $f(z_n)$ with respect to the local parameter defined in the neighbourhood of O.

Put

$$m(r_n, f-a) = \int_0^{2\pi} U_a^+(f(r_n e^{i\theta_n})d\theta_n,$$
 $N(r_n, f-a) = \int_0^{r_n} \frac{n(t, a) - n(0, a)}{t} dt.$

We have, by lemma 1.3.

$$|m(r_n, f-a) - m(r_n, \underline{\infty})| \leq U_{\underline{\varrho}}^+(a) + d,$$

$$m(r_n, a) + N(r_n, a) = m(r_n, \underline{\infty}) + N(r_n, \underline{\infty}) + \varphi(r_n)$$

where

$$\varphi(r_n) \leq U_o(a) + d + |\log |c_k||.$$

If $T(r, \underline{\infty}) = \lim_{n} (N(r_n, \underline{\infty}) + m(r_n, \underline{\infty})) < \infty$, we say that $\underline{z} = f(z)$ is a covering of bounded type.

Theorem 1.1. We map the universal covering surface R^{∞} of R onto $U_{\xi}: |\xi| < 1$ conformally by $\xi = \varphi(z)$ such that $O = \varphi(O)$. If $\underline{z} = f(z)$ is a covering of bounded type, then the composed function $\underline{z} = \underline{z}(\xi)$ from U_{ξ} to \underline{R} has angular limits almost everywhere on $|\xi| = 1$ and there exists a set E of measure 2π on $|\xi| = 1$ such that every Stolz's path terminating at every point of E determines an A.B.P. of R.

Proof. If μ is the equilibrium distribution of unit-mass on a set H of positive capacity on \underline{R} , we have $T(r) = \int_{H} N(r, \underline{z}) \, d\mu(\underline{z}) + 0(1)$, and T(r) is finite if and only if $N(r, \underline{z})$ is finite everywhere. As to the mapping from R^{∞} to U_{ξ} , we can say that the universal covering surface R_n^{∞} of R_n is mapped onto a simply connected domain ξD_n , containing $\xi = 0$, and situated in $|\xi| < 1$, and that a point a_i of R corresponds to a system of equivalent points $\{a_{ij}\}$ $(j=1, 2, \ldots)$: $a_{ij} \in U_{\xi}$. Let $G_{\xi D_n}(\xi, a_{ij})$ and $G_r(\xi, a_{ij})$ be the Green's function of ξD_n and $|\xi| < r$ respectively. Then we have

$$G_n(z, a_i) = \sum_i G_{\xi D_n}(\xi, a_{ij}).$$

Since the Green's function is an increasing function of the domain, and since there exists a number n such that ξD_n contains $|\xi| < r$ for given r, we have

$$G(z, a_i) = \lim_{n} G_n(z, a_i) \geq \sum_{j} G_r(\xi, a_{ij}).$$

This implies that the composed mapping $\underline{z} = f(\varphi^{-1}(\xi))$ is also of bounded type. Put $W(\underline{z}) = \exp(U_{\varrho}(\underline{z}) + iV_{\varrho}(z))$, where $V_{\varrho}(\underline{z})$ is the conjugate function of $U_{\varrho}(z)$. A small circle $|W| < \delta$ corresponds to a disc D of \underline{R} , whence we have $N(r, a_W) < \infty$ for a_W in D. Hence the analytic function $\exp(U_{\varrho}(f(\varphi^{-1}(\xi))) + iV_{\varrho}(f(\varphi^{-1}(\xi)))) = W(\xi)$ is a function of bounded type in U_{ξ} . Accordingly $W(\xi)$ has angular limits almost everywhere on $|\xi| = 1$ by Fatou's theorem. Since the Green's function G(z, O) of R has angular limit zero almost everywhere on $|\xi| = 1$, there exists a set E on $|\xi| = 1$ such that $W(\xi)$ has angular limits and

G(z,O) has angular limits zero. Let l be a Stolz's path terminating at $\xi_0 \in E$ such that $W(\xi)$ has limit W_0 along l when ξ tends to ξ_0 . We denote by L and \underline{L} the images of l on R and on \underline{R} respectively. We shall prove that L determines an A.B.P.

We see at once that L tends to the boundary of R, because G(z,O) tends to zero along L. Assume that \underline{L} does not converge to a point of \underline{R}^* , then we can find two points \underline{p}_1 and $\underline{p}_2 \in \underline{R}^*$ and two sequences of points $\{\underline{q}^i_1\}$ and $\{\underline{q}^i_2\}$ on \underline{L} such that $\lim_i \underline{q}^i = \underline{p}_1$ and $\lim_i q^i_2 = \underline{p}_2$. Accordingly we can find a point $p_0 \in \underline{R}$ and a neighbourhood $V(\underline{p}_0)$ such that there exists a sequence of points \underline{q}^i_0 on subarc λ_i of \underline{L} which tends to \underline{p}_0 , where λ_i is the part of \underline{L} contained in $V(\underline{p}_0)$ and situated between $q_1^{i'}$ and $\underline{q}_2^{i'}$. Let $W''(\underline{z})$: $\underline{z} = f(\varphi^{-1}(\xi))$ be the branch of $W(\xi)$ corresponding to λ_i . Since $|W''(\underline{z})| = \exp U_{\underline{o}}(\underline{z})$, without loss of generality we can suppose that $\{W''(\underline{z})\}$ is bounded in $V(\underline{p}_0)$. Thus $\{W''(\underline{z})\}$ is a normal family. Choose a subsequence $\{W^{i''}(\underline{z})\}$ which converges. Let $W^{\infty}(\underline{z})$ be its limit function. Since $W^{i''}(\underline{z})$ converges to W_0 on $\lambda_{i''}$ when $i'' \to \infty$, $W^{\infty}(\underline{z}) \equiv W_0$. On the other hand $|W^i(\underline{z})| = |W(\underline{z})|$ for every i'' and $W(\underline{z}) \equiv \cosh$., which is a contradiction.

Corollary.⁴⁾ Let R be a covering surface over \underline{R} . If there exists a set E of positive capacity on \underline{R} such that every point of E is covered by R a finite number of times, then $\underline{z} = f(\varphi^{-1}(\xi))$ has angular limits almost everywhere $|\xi| = 1$.

In fact, we can easily deduce that in this case $T(r, \underline{\infty})$ is finite.

Corollary. Let \hat{R} be a covering surface over R. If R is a covering of bounded type over \underline{R} , then \hat{R} is also of bounded type over \underline{R} .

Proof. There exists a system of points $\{a_{ij}\}\ (j=1,\ 2,\ldots)$ of \hat{R} which lie on a point a_i of R. Since $\sum_j G_{\hat{R}}(\hat{z},\ a_{ij}) \leq G(z,\ a_i)$, we have at once

$$T(\hat{R}, r) \leq T(r, \underline{\infty}),$$

where $G_{\hat{z}}(\hat{z}, a_{ij})$ and $G(z, a_i)$ are Green's functions of \hat{R} and R respectively.

⁴⁾ This corollary has been proved by M. Ohtsuka. See "On a covering surface over an abstract Riemann surface", Nagoya Math. Jour., 4, 109-118 (1952).