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142. Uniform Convergence of Fourier Series. V
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Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1955)

1. R. Salem [1] proved the following theorem concerning uni-
form convergence of Fourier series.

Theorem 1. (i) If f(x) is continuous and
(1) -}L-[h(f(x+t)—f(x—t))dt=o<1/log 2) as h—>0

untformly for all x, then the Fourier series of f(x) converges uni-
formly everywhere.

(ii) If fx) ts continuous in [a, b] and the condition (1) is satis-
Sied uniformly for x in [a, b], then the Fourier series of f(x) converges
unsformly in [a+y, b—gy].

(i) If (2) holds uniformly in (a,b), then the Fourier series of
f(&) converges almost everywhere in (a,b).

On the other hand, S. Izumi and G. Sunouchi [2] proved the
following theorem concerning uniform convergence of Fourier series
at a point.

Theorem 2. If
(2) F(t)— f(t’):o(l/logﬁ-lt/[) as t, ' >z,
then the Fourier series of f(¢f) converges uniformly at {=u.

S. Izumi-G. Sunouchi [2] and the author [3] proved theorems
concerning uniform convergence of Fourier series at a point, under
the conditions weaker than (2), with additional condition on the
order of the Fourier coefficients of f(x).

The object of this paper is to prove Theorem 1 by the method
of R. Salem used in [2] and [8]. Further we prove theorems in
[2] and [8], replaced uniform convergence at a point by that in an
interval and their continuity conditions by those of type (1). We
prove also similar theorems concerning ordinary convergence.

Finally we prove an improvement of another theorem of R. Salem
[1], which gives the majorant of the partial sum of Fourier series.

2. We shall prove first Theorem 1, (i). Let s,(x) be the nth
partial sum of the Fourier series of f(x). Then it is sufficient to
prove that s,()—f(x)=o0(1), unif. for odd n. We put

5@ — @)=L "oty g o)=L [+ [T]+o)
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=TI+J+0(1).
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Since f(z) is continuous,

<" 1¢,,(t)|dt<cnw( ) f @t < Co(1/n)=o(1), unif.
o™

0
Concerning J, we get

g1 f D) sm nt g, 1 2 * +’)’°/9’Z,$(t) sinnt g,
T t

o k=1

w/n kﬂ/
T k=1 k /
1 v Pt + 2k fn) — ¢m(t + 2k —1)m/n)
=_ kz_l l:f t 4 Do sin nt dt

o fﬂfn pt-+ @k —ym/n)
(6 + 2 /m)(E + @h—1)m/n)

say, and further we put

sinné dt | = i—[Jl—sz,

=SV [ @ttt 2k /) — fl@+t + 2k —Dym/n)
7y ;CZE [ of t+2km/n sint df
_ f"/” f@—t—2km/n)— fw—t—@k—Dym/n) 4 . at|
t+2k/n
=J. 1 J. 12+
Then
b e f(x+t—|— 2km/n)— f@+t+@2k—Dw/n) .
= Z,“l l' Py sin nt dt
wn f@+t+2km/n)—f@+t+@k—Dym/n) 4 ooy g
0 (& -+ 2o ) 2lome . st d¢ |

—_J1 2
- Jll - Jll‘

Let us now estimate J4. By L, we denote the integral in J%.
Then

L= [ [fw+ 2lomin+ t)— fla+ @k — D/ +1)] sin nt dt
+0f"/2” [ F(@+ 2k m/n-+ (o Jn— b)) — F@+ (2 — Vym/n+ (mr/n—1)) ] sin nt dt
— of"/” [f@+ 2o /n+t)— F@ + 2o /n—t) ] sin nt dt
0 +f T e+ =1y /4 £)— @+ 2+ Ly /n—£)] sin nt dt.

We put &é=x+2kw/n, then we may write

Lk_[z f o f (F(E+t)— FE—1)) sin nt dt

""2Llc1+LIa2
By integration by parts
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L=[sinnt [ “(Re+ u)—-f(&—u))durﬂn

—n f e cos nt dt f t(f($+ u)— f(E—u))du

—o(1/ n log )+ o(n / "ﬂ”(t flog %) dt)=0(1/ n log n),

and L,, is of the same order as L,. Accordingly we get
1 n—1)/2 n 1

R
On the other hand,

SRR fl@ A+ e+ 2k ) — fla 4+ (2k—1)m/n) | d
t
al= 2 f (t + 2lerr|n)2kcar|n
< CanDpco/ ”T) . f tdt < C("zm @1/ — Go(1/my=0(1), unif.
= Jx: k2
Thus we have J;;=0(1) unif. and also J,,=0(1), unif.
Finally we estimate /..
@R fm | gyt + 2k —1)m/n) |
J <™ @ ¢
I/:l = n kz-l -0/ (t+ 2k [n)(C + 2k — 1)m/n) d
2qr (R T o (E 4+ (2 — 1) /n)
< AT S DA )R
=5, = f G+ 2k —1)m/n)?
_ 2w [ o (o (26— 1) /)
) RER-a (t+ (2k— 1y /ny*
If we denote by M the maximum of | f(z)|, then the right hand side
is less than

Lvnl 1 (=12 1 M
e <
C[ <1/n> = TME ] C[ (1/%>+1/ﬁ:l
which tends to zero as n—> . Thus the theorem is proved.
3. We shall next prove that the condition (1) in Theorem 1

may be weakened when some order condition of the Fourier coef-
ficients of f(x) is added (cf. [2], [8]).

Theorem 3. Let 0<a<l. If f(x) is continuous and
1 _ 1\
(3) h[ (flx+t)— fx t))dt—o(1/<log7;> > as h—>0

untformly for all x and further the nth Fourier coefficients of f(x)
are of order O(e&™*|n), then the Fourier series of f(x) converges uni-
Jormly everywhere.

In order to prove this theorem, we put

(@) — flr) = S S g1 o)

k=1

k=1 k=[vn)+1
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_ 1.[["’”+f’"w°g")a’"+f“ J+ow= 1147+ K1 +o),

aT
=/n meBllog )%
where B is the least number larger than 1 such that es™"/n—1
is odd.

Since f(x) is continuous, we have I=o(l). J is different from
the J in the proof of Theorem 1 only in the upper bound of sum-
mation, that is n—1 in J in Theorem 1 is replaced by efs™»*—1,
Hence similar estimation holds. The terms corresponding to J% and
J, are of o(1). The term corresponding to J}, is

eBClog n)%¥ 1 1 1
f(CETL 1)y
=1k (logmn)*
thus J=0(1). Finally

K=23a, cos v cos vt g,u;ntr dt.
V=1

eBllog n)%/m
We can prove that K=o0(1) by the last condition of the theorem (cf.
(8D.
Further we can prove in a similar manner the following theorems.
Theorem 4. Let a>1. If flx) is continuous and

}L Of " (Pl +8)— fo—t))dt= 0(1 / <10g log ?1&) ) as h—0

uniformly for all x and further the nth Fourier coefficients of f(x)
are of order O(&'*¢™%Ip), then the Fourier series of f(x) converges
untformly everywhere (cf. [3)).

If a=1, then the conclusion holds when O(e"2¢""|n) in the last
condition ts replaced by O((log n)'/n), (y>0) (cf. [2]).

Theorem 5. If f(x) is continuous and

% f "(Fa+t)— f(x—t))dt:o(l /‘PGL)) as h—0

and if f(x) s of class ¢p(n), then the Fourier series of f(x) converges
uniformly everywhere, where $(n)=0(n), ¥(n)=log (nd(n)/$(n)), and
6(n) are monotone increasing to infinity as n—> o (cf. [8]).

From Theorem 5 we get the following corollaries.

Corollary 1. Let 0<a<1. If

h o
}Lf (f(oc+t)~f(oc——t))dt=o<1/<log log——}l—&—) ) as h—0

and iof f(x) is of class ¢(n)=mn/e"*#t™° then the Fourier series con-
verges uniformly everywhere.

Corollary 2. Let a>0 and k be an integer =8. If¥

z fh(f(w+t)— fa—t)dt=o(1 / <log i)) as h—>0

1) log(log 2)=1log, z, logy(log #)=logs+ & (k = 2).
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and of f(x) is of class p(n)=n/e""" then the Fourier series con-
verges uniformly everywhere.

4. We can prove Theorem 1, (ii), similarly to Theorem 1, (i).
For,

52(@) — fl@) = 3; f " ou®) Si,nt Gt 4 o(1y= }Tf f jn f 2"} +o(D),

where the first integral is o(1) uniformly as in the proof of Theorem
1, (i). The second integral is estimated as follows.

] f %»(p”t(——t)sin nt dt\{
bl

Pullt) _ Pult+m/n) " et +m/m)| | pa(D)
t t—a/n 1dt+f t+a/n dt+f t dtJ

IA

i

n—m/n 2w —7/n

=gm+&+mx
say. Then

K, < f et et +mm)] g, 1 f " pult)— pult + i) | it
L] t [/

=%Uh€l'f(x+t)—f(w+t+vr/n) I+ fla—t)— fle—t—m/n) l)dt].

By a familiar theorem the right side is of o(1) uniformly as n— <.
Similarly K;+ K, is also of o(1) uniformly.

We can generalize Theorems 8, 4, and 5 in the type of Theo-
rem 1, (ii).

5. We shall prove Theorem 1, (iii), in the following form:

Theorem 6. If (1) holds uniformly for all xz, then the Fourier
series of f(x) converges at all Lebesgue points.

In the proof of Theorem 1, (i), continuity condition of f(x) is
used in the estimation of J% and J, only. For the proof of Theorem
6, it is sufficient to prove that J% and J, are of o(1) at Lebesgue
points.

Jfl:_f"‘z"”f"/" Ja@+t+2km/n)— fl@+t+ R2k—1)m/n) ¢ sinnt dt,

k=1 &+ 2k /n)2km/n
(n—-1>/2 n2

PAEY S kzrfmt[lf(x+t+2kw/n)~—f(x)l

0

1 @+ b+ @k — 1)ar/n) — £@) 1] dt
(n—1)/2 nz

=48 Z[fmlf(x+t+2lcqr/n)—f(x)Idt

+ f M w4+ @ho—1)mr/n)— F@) | dt]
= i+ T, °



No. 9] Uniform Convergence of Fourier Series. V 605

say, then by Abel’s lemma
=1/ n /0
Jh<AS - f | A@+ £+ e /) — F(@) | dt
=1 k2 )

» n Qk+1)7/n
=43 [ flw+t)— flo) b
2k /n
=an L [T ero-s@iae L [Tt -so)12t
<43 Lo [ ot t— s ds+ o).

For any ¢ there is a § such that —gl f 6] flx+t)— flx) | di<e and then

0
for an absolute constant 4

(én/7—~1)/2 ” 1 n Q@r+1)7/n
n=al S [ | flw+)—A@) | dé+o(1)
0
< Ae+ A/8*n+o(1)=Ae+0(),
that ‘is, lim sup Ji} < Ae. Since e is arbitrary Ji=o(1), and hence
Jh=0(1).
We can similary estimate J,, and then the proof of Theorem 6
is complete.
It is easy to see that in Theorem 6 ‘‘for all ’° may be replaced

by “for all x in (a,b)”’, and ‘“‘for all Lebesgue points’’ by ‘‘for
all Lebesgue points in (a,b)’’.

k=1 k=(Sn/m-1 /2

References

[1] R. Salem: New theorems on the convergence of Fourier series, Indagationes
Math., 16 (1954).

[2] S. Izumi and G. Sunouchi: Notes on Fourier analysis (XLVIII): Uniform con-
vergence of Fourier series, Tohoku Math. Jour., 3 (1951).

[8] M. Satdé: Uniform convergence of Fourier series. III, Proc. Japan Acad., 30
(1954).



