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In the present note we consider the generalizations of Kattov’s
results concerning semi-reducibility of finite Baire measure in topo-
logical spaces. Hereafter by a measure/ we mean a finite measure.
We shall use the following notations: C(X,R)-all of real-valued
continuous functions on a T-space X, 3*(X)--Baire family on X,
P(f)--{z, lf(x):>O, f C(X,R)}, 3(X)={P(f)If C(X,R)}, Z(f)-
{xlf(x)----O, f C(X,R)}, 3(X)----{Z(f)If C(X,R)}, Q()- {xl/(U)>0
for any neighborhood U *(X) of z} .

Theorem 1. Let X be a normal space. Then in order that every
Baire measure in X be semi-reducible, i is necessary and su,lcien
that every Baire measure in any closed subspace is semi-reducible.

Proof. Necessity has been proved by Kattov 2]. Hence we
shall prove only sufficiency. Now suppose that there exists
Baire measure which is not semi-reducible. Then there exists a
proper closed set F e 3(X) such that (F)>0, FQ(/)--, even if
Q(#) is a null set. We restrict on *(F) and represent it as
Then, by the hypothesis, there exists a closed set Q in F, which
semi-reduces /e. Suppose that Q is not a null set and take a point
19 e QF. Then (G)>0 holds for every open set G e 3(X)con-
taining p; for 0</(GF)=/(GF) (G). This contradicts to
the fact that p Q(#), and hence Q is a null set. Therefore we
have t(F)=(F)---0. This is a contradiction and hence the proof is
completed.

In the same way as in Theorem 1, we have the following result
concerning two-valued measures.

Theorem 2. Let X be a completely regular space. Then in order
that every two-valued Baire measure in X be semi-reducible, it is
necessary and sufficient that every two-valued measure in any proper
closed subspace is semi-reducible.

Remark. Since a completely regular space such that every
two-valued Baire measure in X is semi-reducible is equivalent to a
Q-space,) we have the same result as [6, Theorem 5].

.--
1) See Katetov [2]. A measure u defined on a a-field xs called semi-reducible

if there exists a closed subset Q of X such that (1) u(G)>0 holds if G is open, Ge8,
G,Q@, and (2) z(F)=O holds if F is closed, Fe,FQ=.

2) In a completely regular space the set Q(z) is obviously closed.
3) See Hewitt [1, Theorem 16].
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Necessary conditions in Theorems 1 and 2 are strengthend as
follows.

Theorem 3. ( 1 Let X be a normal space such that every Baire
measure in X is semi-reducible. Then every Baire measure in any
Fo-subspace YX is also semi-reducible.

(2) Let X be a comletely regular space such that every two-
valued Baire measure is semi-reducible. Then every two-valued Baire
measure in any Fo-subspace of X is also semi-reducible.

Corollar,. Any F-subspace of a Q-space X is also a Q-space.
We state another proof o 2, Theorem 1] in a slightly differen

orm.
Theorem 4. Let X be a paracompact space. Then the following

conditions are equivalent;

(1) every (two-valued) Baire measure in X is semi-reducible,
( 2 ) every (two-valued) Borel measure in any closed discrete sub-

space of X is reducible,
(3) for any (two-valued) Baire measure #, the union of a dis-

crete collection of open sets {G G (X), A} with t-measure
zero has also t-measure zero.)

IZroof. (1)->(2). This is obvious by Theorem 1. (2)->(3). Let
be a (two-valued) Baire measure and let {G a e A} be a discrete

collection of open sets such that G e (X) for any e A and Chat
#(G)=0. Setting G--[J,G, we have G e (X). Take a point
peG, for any aeA and let Y=[p}. Then it is plain ha Y is
a closed discrete subspace and Cha$ [J [G [p e E} e (X) for any
subset E of Y. Let r(E)=/[ [J,G p e E. Then ,(E) is a (two-
valued) Borel measure in Y and vanishes at each point p. Hence
we obtain ,(Y) (G) 0, from discreteness of Y and semi-reducibility
of . (3)-->(1). Let # be any (two-valued) Baire measure in X.
We can suppose that (X)0, for, if #(X)=0, is semi-reducible.
Take a closed set F e *(X) such that FQ()=. It is sufficient
to see tha (F)=0. Since there exists a neighborhood U e *(X)of p
such that (U)=0 for any poia p e F, li_= {U, Flp F} is an open
covering of X. Lee = V a e A., n=l, 2,... be a locally finite
refinement of Ii such hat [V a e A} is a discrete collection for
each n and any V, (X).) Now setting G--[J{V]VF},
we have (G)---0, by (V.)=0 for any VG and (2). Therefore,
setting G [J . V, V, F=b}, i holds that G e (X),FG, and

4) A collection F=HIaeA} of subsets of a T-space X is called discrete if (1)
the closures Ha are mutually disjoint, (2) UeH is closed for any subset B of A.

5) This is stated in Stone [7, Remark of Theorem lJ.
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(G)=0, for G= U-G. Hence we have (F)----0 and this completes
,he proof.

Remark 1. The conditions (2) and (3)are replaced with the
following (2’) and (3’) respectively.

(2’) Any closed discrete subset has ,he power of (,wo-valued)
measure zero.

(3’) Any discre,e collection of open subsets has the power o
(,wo-valued) measure zero.)

Remark 2. It should be no,iced that in the proof of Theorem
4 ,he fact ,ha, a paracompac, space is strong screenable plays an
important rile. v)

In the following we state some results concerning the Lindelif
property.

Theorem ;. Let X be a normal space. If for any Baire measure
in X there exists a closed subspace S with the Lindelif property

such that #(F)=0 holds for any closed set F e *(X) with FS=$,
then any closed discrete subset of X has the power of measure zero.

Proof. Let Y= {p.[a e A}X be a closed discrte subset and let
be a Borel measure defined on all subsets of Y such tha v(p.)=0

for a e A. We define a Baire measure in X as follows:

(B)=v(B Y) for any Baire set BX.
The set YS being countable, we have #(YS)=0. On the

other hand the set Y-YS being closed and disjoint with S, ,here

exists a closed set Z e 3(X) such ,ha, ZS=b, Y-YSZ. Then
we have (Z)=0 by the hypothesis, which shows ha, v(Y- YS)=0.
Hence we have v.(Y)=0. This completes he proof.

Remark. If we replace ,he word "Baire" with "Borel", he
result above is valid in a T-space, except the closedness o S.

Theorem 6. Let X be a paracompact space. If any closed dis-
crete subset in X has the power of measure zero, then for any Baire
measure # in X there exists a closed subspace S with the Lindel6f
property such that S semi-reduces t.

Proof. Since for any Baire measure here is a closed subset
S such that S semi-reduces # by Theorem 4, it is sufficient o see
that he set S has the Lindelif propery. The subspace S being
paracompac, as a closed subspace of X, any open covering 1I= [GI

e A} of S has a locally finite refinement = {H[ e A, n= 1, 2,...
of 1I such ,ha {H. a e A} (n= 1, 2,...) is a discrete collection of

6) About the power of (two-valued) measure zero, see Marczewski and Sikorski
[3].

7) See Michael [4 and Nagami [5].
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open subsets in S. Put H--SU, where U is open in X. Let
[F ! A, n--1, 2,... be a closed covering of S such hat FH,
F. Then we can take discrete collections of open subsets
V A} (n 1, 2,...) in X such ha F V U,V e (X).

Since VS, we have (V)0, and hence A is a countable
set for each n. This shows ha lI is a countable open covering of
S. This completes the proof.

By Theorems 5 and 6, we have the following

Theorem 7. Let X be a paracompact space. Then the following
two conditions are equivalnt;

(1) for any Baire measure t in X, there exists a closed sub-
space S with the Lindel6f property such that (F)=0 holds for any
closed set F e *(X) with FS=,

(2) any closed discrete subset of X has the power of measure
zero.

Theorem 8. Let X be a paracompact and perfectly normal space.
Then the following two conditions are equivalent;

(1) for any Borel measure in X there exists a decomposition

of X such that X=N+S, where (N)--O and S has the Lindel6f
property,

(2) any closed discrete subset of X has the power of measure
zero.

We note hat he ollowing theorem is necessary o prove the
decomposition theorems in Marczewski and Sikorski 3 from our
results.

Theorem 9. Let X be a metric space. Then the following con-
ditions are equivalent;

(1) the character) of X has measure zero,
(2) the power of any closed discrete subset has measure zero,
( 3 ) the power of any discrete open collection has measure zero.
Proof. (1)-->(2). This ollows from 3, Theorem 2. It is trivial

that (2) and (3) are equivalent. (3)->(1). Let k be any positive
integer and let U/(p) be a sphere with a centre p and radius 1/k;
then an open covering 1I- fU/(p)IP X} has a locally finite refine-
ment --- z,() A, n-- 1, 2,... such hat v). is a discrete
collection for each n and k and hat V)e (X), for a metric space
is also paracompact. Then obviously all of open sets belonging o
(k--1, 2,...) constitute an open base with the power of measure
zero.

8) By the character of a T-space we mean the smallest power of an open basis
of X.
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