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In the present note we consider the generalizations of Katétov’s
results concerning semi-reducibility of finite Baire measure in topo-
logical spaces.” Hereafter by a measure 4 we mean a finite measure.
We shall use the following notations: C(X, R)=all of real-valued
continuous functions on a T-space X, B*(X)=Baire family on X,
{Z|f@)=0, fe C(X,R)}, BX)={Zf)|feCX, R)}, Quw={z|u(Us>0
for any neighborhood U, e B*(X) of x}.?

Theorem 1. Let X be a normal space. Then in order that every
Baire measure in X be semi-reducible, it is mecessory and sufficient
that every Baire measure in any closed subspace is semi-reducible.

Proof. Necessity has been proved by Katétov [2]. Hence we
shall prove only sufficiency. Now suppose that there exists a
Baire measure x which is not semi-reducible. Then there exists a
proper closed set F'e 3(X) such that u(F)>0, F~Q(u)=¢, even if
Q(u) is a null set. We restrict u on B*(F) and represent it as uz.
Then, by the hypothesis, there exists a closed set @, in F, which
semi-reduces pr. Suppose that Q, is not a null set and take a point
pe€QCF. Then u(G)>0 holds for every open set G ¢ P(X) con-
taining p; for 0<us(G~F)=u(G~F)<u(G). This contradicts to
the fact that p ¢ Q(x), and hence @, is a null set. Therefore we
have up(F)=u(F)=0. This is a contradiction and hence the proof is
completed.

In the same way as in Theorem 1, we have the following result
concerning two-valued measures.

Theorem 2. Let X be a completely regular space. Then in order
that every two-valued Baire measure in X be semi-reducible, it 4s
necessary and sufficient that every two-valued measure in ony proper
closed subspace is semi-reducible.

Remark. Since a completely regular space such that every
two-valued Baire measure in X is semi-reducible is equivalent to a
@-space,® we have the same result as [6, Theorem 5].

1) See Katétov [2]. A measure u« defined on a o-field B is called semi-reducible
if there exists a closed subset @ of X such that (1) #(G)>0 holds if G is open, G,
G~Q=4, and (2) u(F)=0 holds if F is closed, F'eB, F~Q=4¢.

2) In a completely regular space the set Q(«) is obviously closed.

8) See Hewitt [1, Theorem 16].
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Necessary conditions in Theorems 1 and 2 are strengthend as
follows.

Theorem 3. (1) Let X be a normal space such that every Baire
medsure in X is semi-reducible. Then every Baire measure in any
F,-subspace Y X is also semi-reducible.

(2) Let X be a comletely regular space such that every two-
valued Baire measure is semi-reducitble. Then every two-valued Baire
measure in any Fy-subspace of X s also semi-reducible.

Corollary. Any F,-subspace of a Q-space X is also a Q-space.
We state another proof of [2, Theorem 1] in a slightly different
form.

Theorem 4. Let X be o paracompact space. Then the following
conditions are equivalent;

(1) every (two-valued) Baire measure in X 1is semi-reducible,

(2) every (two-valued) Borel measure in any closed discrete sub-
space of X 1is reducible,

(8) for any (two-valued) Baire measure u, the union of a dis-
crete collection of open sets {G,|G,eP(X), @ € A} with p-measure
zero has also p-measure zero.*

Proof. (1)—>(2). This is obvious by Theorem 1. (2)—>(3). Let
w be a (two-valued) Baire measure and let {G.|a ¢ A} be a discrete
collection of open sets such that G, e B(X) for any a ¢ A and that
w(G)=0. Setting G={wcsGs, we have GeP(X). Take a point
P, € G, for any e A and let Y={p,}. Then it is plain that Y is
a closed discrete subspace and that (J.{G.|p.€ E} e P(X) for any
subset £ of Y. Let v(E)=p[Uu«G.lp.€ E). Then v(E) is a (two-
valued) Borel measure in Y and vanishes at each point p,. Hence
we obtain v(Y)=u(G)=0, from discreteness of ¥ and semi-reducibility
of v. (8)—~>(1). Let u be any (two-valued) Baire measure in X.
We can suppose that u(X)>0, for, if w(X)=0, px is semi-reducible.
Take a closed set F'e B*(X) such that F'\~Q(u)=¢. It is sufficient
to see that u(F')=0. Since there exists a neighborhood U, ¢ 3*(X) of p
such that w(U,) =0 for any point p ¢ F', U={U,, F°|p ¢ F'} is an open
covering of X. Let B={V,.]acd,,n=1,2,...} be a locally finite
refinement of 1 such that {V,.|ac A,} is a diserete collection for
each » and any V,, ¢ B(X).® Now setting Gp=Uo{ V| Via~F ¢},
we have u(G,)=0, by w(V,)=0 for any V,.C G, and (2). Therefore,
setting G=Uno{ Ve | Vaae~nF ¢}, it holds that G ¢ B(X), FC G, and

4) A collection F={H,|a< A} of subsets of a T-space X is called discrete if (1)
the closures Hy are mutually disjoint, (2) \UsesH; is closed for any subset B of A.

6) This is stated in Stone [7, Remark of Theorem 1].
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w(@=0, for G=.,G,. Hence we have u(F)=0 and this completes
the proof.

Remark 1. The conditions (2) and (8) are replaced with the
following (2") and (8’) respectively.

(2) Any closed discrete subset has the power of (two-valued)
measure zero.

(8") Any discrete collection of open subsets has the power of
(two-valued) measure zero.®

Remark 2. It should be noticed that in the proof of Theorem
4 the fact that a paracompact space is strong screenable plays an
important role.”

In the following we state some results concerning the Lindelof
property.

Theorem 5. Let X be a normal space. If for any Baire measure
w in X there exists a closed subspace S with the Lindelof property
such that uw(F)=0 holds for any closed set F ¢ B*(X) with F~S=4¢,
then any closed discrete subset of X has the power of measure zero.

Proof. Let Y={p,|a e A} X be a closed discrte subset and let
v be a Borel measure defined on all subsets of Y such that v(p,)=0
for « ¢ A. We define a Baire measure p in X as follows:

uw(B)=»(B~Y) for any Baire set BC X.

The set Y~ S being countable, we have u(¥Y~S)=0. On the
other hand the set Y— Y ~S8 being closed and disjoint with S, there
exists a closed set Z ¢ 3(X) such that Z~S=¢, Y—-Y~SCZ. Then
we have u(Z)=0 by the hypothesis, which shows that »(Y—Y~S)=0.
Hence we have »(Y)=0. This completes the proof.

Remark. If we replace the word ¢ Baire’’ with ‘“Borel”’, the
result above is valid in a T,-space, except the closedness of S.

Theorem 6. Let X be a paracompact space. If any closed dis-
crete subset in X has the power of measure zero, then for any Baire
measure u in X there exists a closed subspace S with the Lindelof
property such that S semi-reduces .

Proof. Since for any Baire measure u there is a closed subset
S such that S semi-reduces u by Theorem 4, it is sufficient to see
that the set S has the Lindelof property. The subspace S being
paracompact as a closed subspace of X, any open covering U= {G,]|
a e A} of S has a locally finite refinement 8= {H,,|ac A, n=1,2,...}
of N such that {H,lacA} r=1,2,...) is a discrete collection of

6) About the power of (two-valued) measure zero, see Marczewski and Sikorski
[33.
7) See Michael [4] and Nagami [5].
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open subsets in S. Put H,=S~U,,, where U, is openin X. Let
{(F.laeA, n=1,2,...} be a closed covering of S such that F,,CH,,,
F,.*¢. Then we can take discrete collections of open subsets
{(Vislae A} (n=1,2,...) in X such that F,,CV,,CU,,V,. € P(X).
Since V,.~S=¥¢, we have u(V,,)>0, and hence A, is a countable
set for each n. This shows that W is a countable open covering of
S. This completes the proof.
By Theorems 5 and 6, we have the following

Theorem 7. Let X be a paracompact space. Then the following
two conditions are equivalent;

(1) for any Baire measure p tn X, there exists a closed sub-
space S with the Lindelof vproperty such that pu(F)=0 holds for any
closed set F e B*(X) with F~S=¢,

(2) any closed discrete subset of X has the power of measure
zero.

Theorem. 8. Let X be a paracompact and perfectly normal space.
Then the following two conditions are equivalent;

(1) for any Borel measure u in X there exists a decomposition
of X such that X=N+8S, where uw(IN)=0 and S has the Lindelof
property,

(2) any closed discrete subset of X has the power of measure
zero.

We note that the following theorem is necessary to prove the
decomposition theorems in Marezewski and Sikorski [3] from our
results.

Theorem 9. Let X be a metric space. Then the following con-
ditions are equivalent;

(1) the character® of X has measure zero,

(2) the power of any closed discrete subset has measure zero,

(8) the power of any discrete open collection has measure zero.

Proof. (1)—>(2). This follows from [8, Theorem 2]. It is trivial
that (2) and (8) are equivalent. (8)—>(1). Let % be any positive
integer and let U,,(p) be a sphere with a centre p and radius 1/k;
then an open covering U,= {U,,(p)|p € X} has a locally finite refine-
ment B,={V¥|aecd,,n=1,2,...} such that {V®} is a discrete
collection for each % and k¥ and that V&% ¢ P(X), for a metric space
is also paracompact. Then obviously all of open sets belonging to

B(k=1,2,...) constitute an open base with the power of measure
Zero.

8) By the character of a T-space we mean the smallest power of an open basis
of X.



652

1]

[2]
(3]

4]
(6]

(6]
7]

T. IsHI [Vol. 31,

References

E. Hewitt: Linear functionals on spaces of continuous functions, Fund. Math.,
37, 161-189 (1950).

M. Katétov: Measures in fully normal spaces, Fund. Math., 38, 73-84 (1951).

E. Marczewski and R. Sikorski: Measures in non-separable metric spaces, Coll.
Math., 1, 133-139 (1948).

E. Michael: A note on paracompact spaces, Proc. Amer. Math. Soc., 4, 831-838
(1953).

K. Nagami: Paracompactness and strong screenability, Nagoya Math. J., 8,
83-88 (1965).

T. Shirota: A class of topological spaces, Osaka Math. J., 4, 23-40 (1952).

A. H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc., 54,
977-982 (1948).



