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G. C. Evans) proved the following
Evans’s theorem. Let F be a closed set of capacity zero in the

3-dimensional euclidean space (or z-pane). Then there exists a positive
unit-mass-distribution on F such that the potential engendered by this
distribution has limit at every point of F.

Let R* be a null-boundary Riemann surface and let [R} (n=0,
1, 2,...) be its exhaustion with compact relative boundaries [R}.
Put R=R*-Ro. After R. S. Martin,) we introduce ideal boundary
points as follows. Let [p} be a sequence of points of R ending to
the ideal boundary of R and let [G(z, p,)} be Green’s function of R
with pole a p. Let [G(z, p;)} be a subsequence of [G(z, p)} which
converges o a function G(z, p) uniformly in R. We say that [p,.;}
determines a Martin’s poin p and we make G(z, p)correspond to p.
Furthermore Martin defined the distance between two points p and
p of R or of the boundary by

a(p, p)= sup G(z, p) V(z, p)
-,o 1 + G(z, p,) + G(z, p)

It is clear tha Martin’s poin p coincides with an ordinary point

G(z,p,)when p e R and ha if p p, G(z, p) uniformly in R. In
%he ollowing, we denote by R ) the sum of R and the set B of all
ideal boundary points of Martin. Let p be a point o R and let V(p)
be %he domain of R such that e[G(z, p)m]. Then

Lemma 1. f G(z, p).&_2: ) m O.

Proof. Let p=limp: peB, peR. Then D G(z,p)J-2m
and

1) G. C. Evans" Potential and positively infinite singularities of harmonic func-
tions, Monatschefte Math. U. Phys., 43 (1936).

2) R. S. Martin" Minimal positive harmonic functions, Trans. Amer. Math. Soc.,
49 (1941).

8) In this paper means "with respect to Martin’s metric ".
4) The topology induced by this metric restricted in R is homeomorphic to the

original topology and it is clear that B and are closed and compact.
5) In this article, we denote by A the relative boundary of A.
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D G(z, p) lim D [G(z, p) 2rm.

Let (z) be a harmonic function in R-Ro such that (z)-0 on R0,

,(z)=M onR andf ’ds=2. Then since R is a null-boundary
n

0R

Riemann surface, lira M=. Put z-e’’+--_%, where h(z) is

the conjugate o eo(z). Denote he curve on which zl=r by 0
nd the ar of 0, eonined in R-V() by 0. hen dO .

(, )L(r) 2r r r dO,
-r

-() r V8 ) ) dr de.. Hence

f L() g d 2m, for every . herefore

here exists sequenee {L(e)}" i-i() such ha (r) O, when

n n n na -r

on V(p); where V(p) is the part of V(p) out of 0. Hence we
have the 1emma. When p R, our assertion is obvious.

v(p) be an -neighbourhood suchthat v(p)= (, p)Lemma 2. Let

1 Then for every V(p), there exists a neighbourhood v(p)<. 8uh

that
() y().

Proof. Assume that the lemma is false, there exists a sequence
[q} such that lira q=q*" q V(p) and (q*, p)=0. Let [G(z, q)} be

the corresponding functions to [q}. Take an ordinary neighbourhood
(p)) of p with a compact relative boundary such that

G(z,p) ds: l7m.n
Since q V(p) and by the manner in Lemma 1 and by Green’s
formula, we have

I f G(z, q) G(z, p) &.m G(q, p)=
avCp)

6) (p) is such that (p)R and )(p)lRno=O for a certain no, we can choose as
.(p) one of component of R-Rno containing p.
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Therefore 1 $ G(z, q) G(z, p) m,
2" n

accordingly here exist points [r} on V(p)NC(p) such that G(r,
q) 2m, whence G(r, q*) 2m" (r is one of limiting points of rt)
( VOC). Since G(r, p)=/, Chis fact means that 8(q*, p)>8 (>0).
Hence we have Che lemma.

In the following, if G(z, p) has a limit when z->q( B), we define
the value of G(z, p) at q by the above limit denotecl by G(q, p).

Lemma :. If at least one of p and q is contained in R,
G(p, q)= G(q, p).

Assume B p (p=lim p," p, e R) and q e R. Let (p) be an ordinary
neighbourhood of p wih a compact relaive boundary such that
(p) V(p) and (p)$ q. Then we have by Green’s formula

f G(z, 9n n
Since pp, G(z, p)G(z, p) and 9G(z’ p*) -G(z’ P)s uniformlyn
on (p), each erm of he left hand has is Hmit when pp, hence
(, q) has liit 6(, q). On he other han G(p, q): G(q, ) and
6(q, )--lim 6(q, ), hence G(z, q) is -continuous in R and G(p, q)

=G(q, p). G(p, q) can be defined by another way as follows.
In the sequel, we suppose hat both p and q lie on B and consider

G(z, q) he neighbourhood oZ p. Let V(p)=[G(z, p)m], V.(q)

[(z, q) n] and pu
(z, q)= rain [M, G(z, q)]. Then D[(z, q)] 2M.

R

Let G(z, q) be the lower envelope of non negative continuous
superharmonic functions in R-Ro which are larger than G(z, q) in
R-Ro-(). Then (z, q) is armonic in V(), continuous on
V(p)NR and by Dirichlet principle D,[G(z, q)]MD[(z,
2M.
Hence we can prove, by he same maaner used in Lemma 1, hat

there exists a sequence of compact curves [q} enclosing B such

and we can prove hat

" " z 9G(z, )_ ds ( 1 )
9n

Vm(P) OVm(p)

where m’ >m, i.e. V(p) V,(p).
Now let G(z, q) be he lower envelope of non negative continuous
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superharmonic functions in R-Ro which are larger than G(z, q) in
R-Ro- V(p). Since G’(z, q) G(z, q) on V(p) and the function
G(z)[ =G(z, q), if zV(p), =G’(z, q) on V(p) is one of superrmonic
functions which are larger than G(z, q) in R-Ro-V(p), hence
G(z, q)=lim G(z, q). Thus, let Mo. Then by (1)

f G(z, q) VG(z, p) ds-f G,.(z, q) VG(z, p) dsn n
[ a(z, q)a(z, ) ds. ( 2 )n

Put G(z, q)-G,,(z, q)= H(z). Then H(z) is positive and vanishes almost

everywhere on Y=(p) (with respect o the measure of G(z, p)ds).n
Let H....(z) be the lower envelope non negative continuous super-
harmonic functions in V(p) which are larger than H(z)in
-V.(p)" m’>m. Then

G.,.(z, q)-G(z, q) + H.,(z). Hence by (2)
G( q) G(p, q),

1 f G(z, q) G(z, p) ds.where G(p, q)=-We define the value of G(z, q) at p, denoted by G(p,q), by
lim G,,,(p, q).

When q e R, this G(p, q) is he same that is defined before.
We shall prove the following
Theorem 1. 1)

2) G(z, p) is -lower semicontinuous in R.
3) G(z, p) is perharmonic in weak sense.
4) G(p, q)-G(q, p).

1) is clear by Lemma 2 and 3) is also clear by definition of G(q, p).

Proof of 2). Let pp. Put G,.,(p, q)-2dG(z’ ds,

then thee exists n, for every positive number , such hat. 1 f *(z, q) aG(z, ) ds+ .
Since he genus of R+-Ro is finite, map R+-Ro onto a compact
surface on the w-plane. (R-Ro)V(p) is composed of at most a
finite number o analytic curves. We make sufficiently narrow strip
B in R+-Ro such that B contains (p)R, and B passes end
points of V(p)R, orthogonaly. We divide B into a finite number

7) If U(P)2r j U(z)-
8n

--ds for only the niveau curve C of the Green’s

function with pole at p, we say that U(z) is superharmonic in weak sense.
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of narrow strips B, (/----1, 2,-.-, k) so that B: intersect 3V(p) with
angles (4=0, r) and we map B onto a rectangle: 0 Im4 ( is
sufficiently small), 1 Re 1, on the t-plane such that any vertical
straight line: Re --s: 1 s 1 intersects only once V(p)" j Jo.
This is possible, since G(z, p)G(z, p), and their derivatives converge.
We make a point of V(p) correspond to a point of V(p),

where Re -Re. Since 3G(, p) ds 0 and uniformly bounded

in B and since G(., p) ds ds and since G(, q)G(, q),n n
we have

whence

n n

G,,(,2(, q)=lim 0(, q) G(,)

=f ’(z,q)G(z’P)ds-. Let 0. Thenn
lim "G(2(p, q) G((p, q). Hence

G(p, q) is -lower semieontinuous.
If p B, we consider p.,
Since G.(p, q) G..(p, q) and since G,,(p, q) G(p, q), G(z, q) is

also -lower semieontinuous at p, wkenee G(z, q) is lower semi-

continuous in R (no only in R where G(z, q) is continuous).
Proof o 4). Let and be points o2 R lying on V(p) and

V(q) respectively. I n is outside of V(p),
1  G(z, p) ds.

If V(p),
1 fG(, ) a(z, p) d-m G(, )-G(p, ),
2 n

where C= V(p).

Since G,)(p, q)=---fG($, q) G($’---P)--dS’n and since V(q) B,

when n, for any given positive number , there exists a niveau
curve C’-V,(q) such that

f a($, q) VG($, p) ds,

where is the part of C out of V(q). Let $ be a point on R.
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Then p V(q), whence
1 fG(, e) G(, q)d. Accordingly we haveG($, q)=G(q,, $)- 2-- n

--4. G($, ) n n

2" n 2 no c

If V(p)

o 6’

1 fG(v, p) G(, q) &. HenceOn the other hand

G.,.)(p, q) 4.- o, c n Vn
1 fG(v, p) aG(v., q) ds-G(q)(q, p).

Since he inverse inequality .holds for the other V,(p) and V,(q)
and since G,()(p, q) G(p, q) and G,,()(q, p) G(q, p), we have 4).


