No. 8] 445

109. On Imbedding a Metric Space in a Product of
One-dimensional Spaces

By Jun-iti NAGATA
Department of Mathematics, Osaka City University
(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1957)

It is well known that every separable metric space can be imbedded
in Hilbert cube I“. Recently K. Morita has proved that a regular
space having o-star-finite basis can be imbedded in the topological
product N(2)X I of a generalized Baire’s zero-dimensional space N(2)
and I*.® On the other hand the author has shown that every n-
dimensional metric space can be imbedded in a product of n+1 one-
dimensional spaces.”” However, it seems that there is little study on
imbedding general metric spaces in a product of one-dimensional
spaces. The purpose of this note is to show that every metric space
can be imbedded in a product of countably many one-dimensional
spaces.

In this note we concern ourselves only with metric spaces and
mean by a covering an “open” covering.

Lemma 1. For every covering Wl of a metric space R there exist
collections U, (:=1,2,---) of open sets and a covering B such that

B< \°3u,.<u and such that each S*(p, B) (peR) intersects at most one
i=1 =)
set of U, for a fixed 1 and finitely many sets of U,
i=1

Proof. As it was shown, for every fully normal space, by A. H.
Stone,” there exist open collections U, (1=1,2,---) and a covering B
such that W< Sui<u and such that each set of & intersects at most

i=1 o
one set of U, and finitely many sets of ~U,. If we take a covering
G=1

B satisfying B2L< W, then all the conditions of this lemma are satisfied.
Lemma 2. For every coverings P, (1=1,2,.--) with order P, <2

and B satisfying B< X‘-Bi, there exist locally finite coverings N,
i=1
(t=1,2,.--) such that N*<P,, order N, <2 (1=1,2,---) and such that
there exists a covering W satisfying BW< X%,
i=1

1) The proof of this theorem is unpublished. Cf. K. Morita: Normal families
and dimension theory for metric spaces, Math. Ann., 128 (1954). Cf. also J. Nagata:
On imbedding theorem for non-separable metric spaces, Jour. Inst. Polytech. Osaka
City Univ., 8, no. 1 (1957).

2) Note on dimension theory, Proc. Japan Acad., 32, no. 8 (1956).

3) A. H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc.,
54, no. 10 (1948).
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Proof. Let U*<B< X‘-B,;, P,={Ps.|8e¢D,}, then we define cover-
ings M, ¢1=1,2,---) by -
miz{Ms,i l seD}, MG,'IZV { Ul S(,M < PS,i’ Uell}.
First, we notice that U*< j; P, implies U< ji M,. Since each set of U
intersects, from order %, §~21, at most two szlts of M,, M, is a locally
finite covering with order I, <2.
Taking I’ satisfying ()2<U, we define coverings 2, (1=1,2,---)
by
L, ,=S(Ms;—> {Ms ;| 88" e D;}, )
Qs,;=Ls,—> {E6f,i [68"eD} (5¢Dy),
Di—_—{QG,i, Ma,i’\MB,i l 8 a,BeD;}.

To prove U'< Xﬁi we consider an arbitrary U’ell” and £, Let
i=1

U< M;,cM,. Inthe casethat U'E M, , for every § with §8¢D,
we have U E~{M, |88 D). For if U~ {M, |88 D},
then U’ intersects at least two of M, , (8'==8), which contradicts the
fact that every set of U intersects at most two sets of R, There-
fore U'S L;;. To show U ~ L, ,=¢ for every & =8, we assume the
contrary, ie. U' ~Ly ¢, 8'=8. Then there exists U”cll’ such that
U~U'%¢, U'dM,, Hence it follows from U’ M, (8" =8) that
U~U"%M,, for every 8¢D, which contradicts (U)><IM, Thus we
have U’'~L; ,=¢ (5'=8) and consequently U’' S Qs,c9Q,.

In the case that U' & M, , 88, we have U' & M;,~M; 2,

(-]
In consequence we conclude W'< A 9,.
i=1

Since Qs ~ Qs =¢ (88" is obvious from the definition of Q;,,
it follows from order M, <2 that order 0 <2. If Qs ,~(M, ,~M; )¢,
then S(M,, W) ~(M,;~M,;,)*¢, and hence 8=a or 8=B. For
example, let 8=a, then Qs ,~ (M, ~M;,)=Qu,~ (My,~M; )<= S(M,,,
<P, , Since Q;,=Ps,and M,,~Ms, are obvious, we have 2 <.
The local finiteness of L, is obvious by the above discussion.

Repeating such a process we get locally finite coverings M; (1=
1,2,---) such that NA<Q,, order N, <2 and such that there exists a

covering W satisfying W< X%l Since N¥ <P, is clear, these N, satisfy
$=1

the conditions of this lemma.

Lemma 3. Let &, > >8,>C¥>.-. be a sequence of coverings
of a metric space R such that {S(p, S,)|m=12,---} s a nbd (=
neighborhood) basis of each point p of R. Then there exist countably
many sequences
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ml,i>%{i>%2,i>%;‘i> (?/_1 2,”')
of coverings such that order N, , <2 (m,'b_l 2,..+.), for every m and
every point p of R there exists N, , satisfying S(p,N,..)<=S(», S,)

and such that for every m there exists a covering BB,, with B, < X%mz

Proof. First, we choose, for &,, open collections U, ; and a';ver-

ing B satisfying @2>:le1,1.>§8 and the other conditions of Lemma 1.

Let U, ,={U,|acA} for a fixed i, then we define a covering Ny, by
N, ,={S(U,, B), R-;jf; | e A).

Let us show that %, , satisfies the conditions of this lemma. Order
N,,=2 is deduced from the fact that S*(p, V) intersects at most one

set of U, ,, B< /\S“t1 , is obvious. Since vul ; covers R, we can take,

for every point p of R, 1 and a ¢ A such that pe U,ell, ,. If peS(U, D),
then we have, from 8<G,, I, ,<&, and &§<S,, S(U,, B)= S(p, S)).

This combining with p ¢ R-—"Al_f; implies S(p, R, .) = S(p, ;).
ae

Let us assume that we can define such %,, (¢=1,2,-.:) for [ <m,
then we shall define %,,,, , (¢=1,2,-. ) as follows. Since order N, ,<2

and N <Z%m’i for some covering N, we can choose, by Lemma 2, locally
finite cov;lrings N, (1=1,2,...) satisfying NF <N, , order N, <2 and
N < /\% for some covering N’. Moreover there exist, by Lemma 1,
open collectlons B, (¢1=1,2,---) and a covering Q such that Q< \/‘43z
<M,&,,,, for a covering M with M**<N'< /\92 and such that each

=1
S%(p, Q) intersects at most one set of P, and finitely many sets of

S, Let $,=(P,.|BeBy}, X={N,,|y<r}, then we denote by y=y(3)
=1

the first ordinal y such that S(P;, Q)& N, ,eN,. Now we define cover-
ings M, ., , (¢=12,--:) by
%m+1,i={KT,i’ S(Ps,t’ D) l y<mi, BEB},
K. =N, =" {Ps, | v=vB)} 7 {S(Ps,: L) | v Fv(B)}-

First, M, ., <R, <N¥<N, , is obvious from Q<P, <M <M**<N,. To
show order %,.,,=<2, we take an arbitrary point p of R. If p¢ S
(Ps.; Q) for every BeB,, then p is contained, by order %,<2, in at
most two of K ,(y<t,). If peS(P;, Q), then it follows from the

relation of Q and P, that p¢ S(P,, Q) for every a with B4acB,.
Since it follows from the definition of K., that p¢ K., for every

v<r; with y==(8), p is contained in at most two sets of N,,, ..
Therefore we have order N,., ,<2.
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We notice that ®,,,,, covers R. For if p¢ S(P;,, Q) for every B¢ B,
p¢ S(P;,, Q) (BeB,) implies pe K, ; for ¢ satisfying peN,, On the
other hand peS(P,, Q) implies peK,, for y=«(B), proving R, ,
covers R.

Next there exists a covering B such that B< Z{lﬂ?mﬂ,i. Denoting

by p an arbitrary point of R, we see that S(p, Q) intersects a finite

number of S(P;, Q) (BeB, 1=12,---). We assume S(p, Q) intersects
S(Psiiy, 5 Q) (1=14,-++,%,) only. Then for 13-14,--+,4, we have, from
QA<M S(p, Q)S K, ; for some y<r, Hence there exist an open nbd

Up) of p and N,e®,,,,, (4=12,---) satisfying U(p)_C_;Nt.
=1

Last we take, for a given point p of R, ¢ and B¢ B, such that
pe Py ,. Then it follows from Q, $,<S,,,, <SS}k, <&, ,, that S(p, N, .1,:)
=8P, =S S,.1). Thus R, , (¢=1,2,.-..) satisfy all the
desired conditions.

Lemma 4. FEvery metric space has sequences

ul,i>u§‘if >u2,i>u§:;k> e (1=12,-4)
of coverings such that S(p,U,.,, ) intersects at most two sets of 1, ,
and such that {S(p,U,,,)|m,i=12,---} ts a nbd basis of p.

Proof. We can deduce this lemma directly from Lemma 3 as we
have shown in the previous paper.®

Theorem. FEvery metric space R can be topologically imbedded in
a product of an enumerable number of functional spaces R, with
dimR, <1 (#=1,2,---).

Proof. The proof of this theorem is analogous to the previous
one.” Let us sketch the outline of the proof. We denote by U, ,>}*
>, >UFF>-.. (1=12,---) the sequences satisfying the conditions of
Lemma 4. Let U, ,={U,|acA4, }, Vu=S(U,U,.,. ) (acA,,), then we
can define continuous functions f, ,, ; (a€4,, ;) such that f,, .(V5)=0,
Jom (U)=1/2""" (@A, ,), 0=fy,.=1/2""" and such that yeS(x, U, ,)
implies | f, .., (%) —fo n «(y) | <A/2" for some definite number 4 and for
every m and a€ 4, ;. Considering a topological product P,=II{I,|ac A4, ,,
m=1.2,---} of L,={x|0<x=<1/2"""} (acA4,, ), we define a mapping
F, of R into P, by

Fi@)={Sa,m,il®) | fo,m,i(®) € L, (@€ Ay, m=12,---)} (xeR).

Now we can show that R,=F,(R) (Z P,) is a metrizable space
with dim F(R)<1. Letting N,=F,(R)~{{p.}|0.>0} (acA, ), N,.
={N,|ac A4, ]} we have a covering N, , of R,=F,(R). We can show
easily order %, =<2, Nk, <N, , and that {S(p,N,.))|m=12,--.} is
a nbd basis of each point p of R,. Hence we can conclude, from the

4) The proof of Theorem 2 of ‘“Note on dimension theory” loc. cit.
5) The proof of Theorem 3 of “Note on dimension theory’’ loc. cit.
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previous theorem,® the metrizability of R, and dim R, <1. As it is well
known, we can regard R, as a functional space of functions of < A,
where the strong topology of R, is clearly identical with the we;f:l one.

Now we define a mapping F'(x) of R into ER" by F(x)=(Fy(x),

Fyx),--+) (xeR). Then F(x) is, as easily seen, a homeomorphic map-
ping. Thus R is homeomorphic with the subspace F'(R) of the product

space f[l R, of functional spaces R, with dim B, <1.

6) Note on dimension theory, Theorem 2.



