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138. An Analytical Proof of the Fundamental Theorem
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(Comm. by Z. SUETUNA, M.J.A., Dec. 12, 1957)

The aim of this note is to give an analytical proof of the follow-
ing fundamental theorem on finite abelian groups.

Theorem. For any finite abelian group &, there exists a basis
(t,; L=<v<m) such that for any element t of &, we have one and only
one representation t=t't;? - -t,", where 1<r,<n, (1=<y=<m), n, being
the order of t,.

Proof. Let & be a finite abelian group of order » and 9 its
group-ring over the complex number field C. The ring $ may con-
stitute an (n-dimensional) Hilbert space with the inner product (e, b)

=, a(s) B(s) (B(s)=the complex conjugate number of B(s)), where
a=>cqa(s)s and b= B(s)s. Let U, be a unitary operator defined
by Ua=>cga(t™'s)s on § and N be the C*-algebra generated by
(U;te®). The algebra % is homomorphic to C(R), the totality of
the complex-valued continuous functions on 2, where £ is the character
group of &, which consists of finite points {2,; 1<v<m}. In fact, for
any element ¢ of &, it follows from ¢"=1 that a spectrum of U, is
an n-th root of 1. Hence, the number of characters of & is at most

n*. Let A—A be the canonical homomorphism from % into C(2).

Then, t—U, (te®) is an isomorphism. In fact, if t=1, then U, has
at least one spectrum {, where { is a primitive r-th root of 1 and r
is the order of ¢. Hence, there exists a maximal ideal M of R con-
taining U,—¢, where R/ is a cyclotomic field over C, that is 3t/ M=C.
Therefore, there exists a character 2 of & with A(f)3=1, where 2 is
the canonical homomorphism from 9% onto R/M. Hence, we may assume

without loss of generality that t=U,te®). Let C, be (t(4..); te®,
t(2)=1,---,t4,)=1), which is a finite cyclic group in C, because a
subgroup of a cyclic group is again cyclic. Let &, be a subgroup of
®, which consists of elements t’s of & with t(2,)=---=%(,)=1, and
t, be an element of &, whose value at 4,,, is a generator 7, of C,.
In order to prove that, for any element ¢ of &, there exists the
representation stated in the theorem, we need only to prove that t¢@®,
implies t,;3"*€@®,,, for one and only one natural number 7, ., between
1 and n,,,, And the number r,,, defined by (a,.,)=nx"%' satisfies
this condition,



