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52. On Locally Q-complete Spaces. 1
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Tokyo Gakugei University
(Comm. by K. KUNUGI, M.J.A., May 7, 1959)

If Z is a @Q-space containing X as a dense subspace, then we call
Z a Q-completion of X.© X is said to be locally complete with respect
to the structure® p of X if for any point x¢X, there is a neighborhood
whose closure is complete with respect to x# If p is the structure
generated by C(X),” then we say that X is locally Q-complete. X is
called a local Q-space if for any point xeX, there is a neighborhood
of x whose closure is a @-space. It is obvious that any Q-space is
locally Q-complete and any locally @-complete space is a local @-space.
If X is normal and is a local @-space, then X is locally @-complete.

In this paper, we shall establish some relations between a locally
Q@-complete space and its @Q-completion, which are analogous to the
relations between a locally compact space and its compactification.

Lemma 1. Let B be a closed subset of X and Z a space obtained
Jrom X by contracting B to a point. If either X is normal® or B
is compact, then Z is completely regular.

This lemma is easily proved by the normality of X or the compact-
ness of B respectively. In general, the space Z mentioned above is
not necessarily completely regular.

Lemma 2. Let Y be a Q-space and F a closed subset of Y, and
Z be a space obtained from Y by contracting F to a point p in Y.
If Z is completely regular, then X=Z—{p} is locally complete with
respect to the structure generated by C,={f; feC(Z), f(p)=0}.

Proof. We notice first that C, is considered as a subring C, of
C(Y) whose elements vanish at every point of B=F"“'{p}. For any

point z in X, there is a neighborhood V such that I7(in Z)$p in Z.
To prove that V(in Z) is complete with respect to the structure

generated by C,, it is sufficient to prove that U= V(in Z), considered
as a closed subset of Y, is complete with respect to the structure g

1) A space considered here is always a completely regular T,-space. C(X) denotes
the totality consisting of all real-valued continuous functions defined on X, and B(X)
denotes a subset of C(X) consisting of all bounded functions.

2) A structure of X considered here means a uniformity of X which agrees the
given topology of X. A structure gemerated by C, which is a subset of C(X), is a
structure given by the following uniform neighborhoods: Wi(x; fi,: -, fa, &) ={y;|f(x)
—fi(y) | <e} where f;€C and ¢ is an arbitrary positive real number.

8) In case X is normal, Z is normal.
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generated by C,. Let {a,; a.c U, acl'} be a Cauchy directed set with
respect to g, and fi, fs, -+, [, €C(Y), e>0. Since Z is completely regular,
there exists feC, such that f(B)=1, f(U)=1 and 0<f<1. Then
we have f,f<C, for every 4. Since {a.; acl'} is a Cauchy directed set,
there is a point ¢ in U and an index a, such that
le W(Q;flfnyfy' ‘ 'yfnfy S)

={w; | fi S (@)—F. /(@) |<e, xe U}sa, for a>a,.
By the method of the construction of f, we have

WA i Sore e oy S ¢)sa, for a>a.
This means that {a,;acl'} is a Cauchy directed set with respect to
the structure generated by C(Y). Since Y is a Q-space, {a. acl'}

must converge to a point in U because U is closed in Y. Thus V
(in Z) is complete with respect to the structure generated by C,.

Since C(V(in Z)) can be considered as a set containing C, as a
subset, the space X mentioned in Lemma 2 is locally @Q-complete, and
hence is a local @-space.

Theorem 1. Let Y,F,p,Z,X and C, be the same as in Lemma 2.
If either F is compact or Y is normal, then X is locally complete
with respect to the structure generated by C, and hence X is a local
Q-space. Moreover Z is a Q-space.

Proof. The first part of theorem is an immediated consequence
of Lemmas 1 and 2, and hence we shall prove the latter part. C(Z)
can be considered as a subring of C(vX)* consisting of all functions
which take a constant value on B (as in Lemma 2). Let (a,; acl)
be a Cauchy directed set with respect to the structure p generated by
C(Z). For any fy, fo- -, f,€C(Z) and any >0, there exist a point ¢
and an index a, such that

U=W(q; f1, for * *, Jfuy €)20, fOor a>a,.
If | fi(p)—fi(q)| <e¢/2 for each i, we have W(p;fi, fo- ) o €)2a, for
a>a, This means that {a.; acl'} converges to p. Now suppose that

there are ¢ and some f; such that |f,(p)—s(q)|>¢/2. Then U(in Z)
is disjoint from the point », and hence _Tj(in Z) is complete with

respect to z, because U(in Z) is complete with respect to the structure
generated by C, as easily seen in the proof of Lemma 2. Thus

{a.; acl'} converges to a point in l7(in Z). Therefore Z is a @Q-space.
Let ¢ be the structure generated by a subset of C(X) and X be
the completion of X with respect to the structure y; then we can not

4) For a space X there exists a unique space vX which is completely determined,
up to homeomorphism by the following properties: (1) »X is a Q-space, (2) vX con-
taing X as a dense subspace, and (8) every function in C(X) can be continuously
extended over vX (E. Hewitt: Rings of real-valued continuous functions I, Trans.
Amer. Math. Soc., 64, 45-99 (1948)).
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conclude that X is open in X even if X is a local Q-space. Such an
illustration is given by the set of all rational numbers with the struec-

ture defined by the usual distance function. The completion Xof X
is the space of all real numbers with the usual metric, and X is not
open in X even if X is a Q-space (and hence X is local Q-space). The
openness of X in X will be investigated in Theorems 2,3 and 4.

Lemma 3. If vX—X 1s closed in vX, then Y=00X—X)*~ X s
a Q-space.

Proof. Now suppose that Y is not a @-space and bevY—Y.
XC YC X implies that vY is contained in BX. By the definition
of vY, any function of C(Y) is continuously extended over b. But we
shall prove that this is a contradiction, that is, there is a function
of C(Y) which is not continuously extended over b. Since vX$b, there
is a function f of C(X) which is not continuously extended over b.
On the other hand, the compactness of (vX—X)?, which is disjoint
from X, implies that there exists a (bounded) function g of C(B8X)
such that g vanishes on some neighborhood U(in $X) of B and g=1
on some neighborhood V(in 8X) of b. Then

hz{ gon U Y
gf on X—U
is a continuous function defined on Y. But gf is equal to f on V~X
and it is not bounded on V.~ X, and hence & is not continuously ex-
tended over b. Thus we have vY=Y, that is, Y is a Q-space.

A one-point @-completion of X which is not a Q-space is a Q-
space Z such that Z contains X as a dense subset and Z—X consists
of only one point. A one-point @-completion of a locally Q-complete
space which is not a @-space is not necessarily unique. Such an
illustration is given by a locally compact space X which is not a @-
space. A one-point compactification of X is a one-point Q-completion
of X. On the other hand a @-space Z obtained in (2-+3) of Theorem
2 is so also. As easily seen from the proof of (2—38) of Theorem 2,
if X is a locally compact space which is not a @-space, and BX—
(b X—X)*~X) is not a finite set, then there exist infinitely many
one-point @-completion of X. For any befX—((pX—X)"X),
X~ (wX—X)"~{b} becomes a Q-space by the same method as in the
proof of Lemma 3. We replace Y, F' and p as in Theorem 1 respect-
ively by X~ (pX—-X)"~{b}, W X—X)*~{b} and b respectively. Then
the space Z is a non-point Q-completion of X. We shall say Z ob-
tained in (2—>38) of Theorem 2, a natural one-point Q-completion of X.

Theorem 2. The following conditions for a non Q-space X are
equivalent:

1) X 1s locally Q-complete,
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2) X is open in »X,
3) there is a ome-point Q-completion of X.

Proof (1-2). We suppose that B=yX—X is not void and is
not closed in vX. There is a neighborhood V(in vX) of a point p in
B(in vX)~X such that V(in X) is complete with respect to the

structure g generated by C(X), and V(in X) contains a direct set
{as; @€'} which converges to » where a,e U=V ~X for each acl.
Since {a., acl'} is a Cauchy directed set in U with respect to the

structure g, there is a point # such that {a.; acI'}>2¢c U(in X). This
is a contradiction, and hence B must be closed in vX.
(2->38). Suppose that B=vX— X is closed in vX. Now we consider

vX as a subspace of BX(=the Cech compactification of X). Then

B(in fX)=B, is compact and is disjoint from X by a closedness of B.
We replace Y, F and p» as in Theorem 1 respectively by X~ B, B,
and a point p in B, respectively. Then vX“~B, is a @Q-space by
Lemma 3 and the space Z as in Lemma 2 is completely regular. On
the other hand, Z can be considered as a continuous image of vX
under a mapping ¢¥ where ¥ is an identical mapping from »X into
vX~ B, and ¢ is a mapping from vX“~' B, onto Z such that ¢(x)=x
for 2 ¢ B, and ¢(x)=p for xeB, Therefore, by Lemmas 1 and 2, Z
is a @-space and Z=X"/(p), i.e. Z is a (natural) one-point @-comple-
tion of X.

(8—>1). Since X has a one-point @-completion Z, it is obvious
that X is open in the space Z. By Lemma 2 X=Z—{p} is locally
complete with respect to the structure generated by a subset consist-
ing of functions which vanish at the point p. This subset is a subset
of C(Z), and hence X is locally @-complete.

(1) and (2) in Theorem 2 are generalized in the following form:

Theorem 3. Suppose that p is a complete structure of X and Y
1s a subspace of X, then Y is open in X if and only if Y s locally
complete with respect to the structure p.

Proof. Suppose that Y is open in X. For any point y in ¥ we
take a neighborhood U whose closure in X is disjoint from X—Y.

Then it is easily verified that U(in X) is complete with respect to the
structure g.

Conversely, if B=X—7Y is not closed, it is easily seen that there
are a point p in Y such that pe(B(in X)—B) and a neighborhood

V(in X) of p such that V(in Y) is not complete with respect to the
structure g, by the analogous method of the proof of (1—-2) in Theorem 2.

Corollary. If X is a Q-space, then any open subset of X is
locally Q-complete, and hence a local Q-space.
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Next we shall give the relations between the local compactness
and local completeness.

Theorem 4. The following conditions are equivalent:

1) X 1is locally compact,

2) X 48 open in any its Q-completion,

3) X 1is locally complete with respect to the structure gemerated by
any subset of C(X).

Proof (1—2). Let Z be any Q-completion of X. Since X is
locally compact, for any point x of X, there is a compact neighborhood
of # contained in X. On the other hand, any compact space has an
only one structure which is complete. Therefore, X is open in Z by
Theorem 3.

(1->2). Let g be a structure of X generated by any subset of
C(X), and Y be a completion of X with respect to the structure p.
Since Y is complete with respect to 4, Y is a @-space, and hence Y
is a @-completion of X. By the assumption X is open in Y. On the
other hand, since g is regarded as a complete structure of Y, X is
locally complete with respect to the structure g by Theorem 3.

(8—>1). BX is a Q-completion of X with respect to the structure
generated by B(X). By the assumption, X is locally complete with
respect to the structure generated by B(X), and hence, by Theorem
3, X is open in BX. Therefore X is locally compact.



