
No. 5] 199

43. On the Behaviour of Analytic Functions on the
Ideal Boundary. IV

By Zenjiro KURAMOCHI
Mathematical Institute, Hokkaido University

(Comm. by K. KUNUG, M.J.A., May 12, 1962)

Let R be a covering surface over _R (with null or positive bounda-
ry). If R satisfies the following two conditions, we say that R is
almost finitely sheeted.

Condition 1). If we take sufficiently large compact set R’, n(w)
Moo in __R--_R_’, where n(w) is the number of times when w is
covered by R.

Condition 2). For any point of _R, there exists a compact circle
C(r, p)_R such that C(r, p) is mapped onto a compact domain D in
the -plane by a local parameter at p and that the area of any
component of f-(C(r, p)) (let G be a component of f-(C(r, p)), then G
is mapped onto a connected piece over D and the area of G is taken
over the -plane) is finite.

If _R is the w-Riemann sphere and R has finite spherical area,
clearly R is almost finitely sheeted.

Lemma b). For Beurling’s theorem. Suppose a covering surface
R with positive boundary and with D.S. topology over R (with null
or positive boundary) with another D.S. topology. If R is almost
.finitely sheeted and if w(FG, z) (C.P. of FG relative to R--Ro.
In this case we omit R--Ro)O), w(FG, z, G’)O, where F is a closed

set in B and G is one domain contained in f-(C(r, p)) and G’ is

that of f-(C(r., p)) containing G’r
Proof. Case 1 w(F G[’CB.,z)>O .=f (B_), B_--E wR,

__B)---ln|. In this case by P.C.5 we can find a compactdist(z, 5-circle

F (F is mapped onto a circle in the 5-plane by a local parameter)
in __R such that o(FGG,z)>O, FF*C(r., p), where G is one
component of f-X(F) and F* is compact set mapped onto a compact
domain D: by the local parameter 5--5(w). Let F. be a circle in D:
with the same centre as F such that FFF*, dist(3Fx, 3F.)O.
Let U(5) be a continuous function in D: such that U(5)-0 on D:--F

is harmonic in F.--F and U()-I on F. Then max-’(] 3U(5)[U()

’"i3U().l)Moo --zTi. Let G be one component of f-(F)

containing G and consider U(z)-U(f-(w-(5)))in G. Then D(U(z))
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Marea of G. (taken over the -plane)L o and U(z)-I on
GG, U(z)-O on 3G*-G, where G* is a component of f-(F*) con-
taining G. Put U’(z)-U(z) in G* and U’(z)-O in R--G*. Then
U’(z)-O on R-G and U(z)-i on GG1. Further put V(z)--min
(w(FGG,z), U’(z)). Then V(z) is continuous in R--Ro and V(z)-I
on 2GG1, V(z)-O on 3Ro+(R--Ro--G.) and D(V(z))<L+D(w(F,
z))’F--E z’dist(z,F)_-n Let be one component of

f-l(C(r.,p)) containing G*. Then by G’G*G, V(z)-O on G’
+(RoG’) and V(z)-I on F.,GG1. Hence by the Dirichlet principle
D(Y(z)) D(w(FGGI, z, G’));> D(w(FGGI, z))>O for every m.

Thus by putting G-- G G1 we have w(F G, z, G’) > 0.
Case 2. w(FGB’,z).-limw(FGB,z)>O. Let Rn be an

exhaustion of _R with compact relative boundary 3__Rn. Since R0 is
compact, there exists a number no such that f(Ro)(__R--_Rn0)--0 and
n(w)M< in R--_Rn0. By o(FGB’ z) > 0, we can find circles
C(rl, p)C(r.,p)R--Rno such that w(FGGIB’,z)>O, where
is one component of f-l(C(rl, p)). Now since the topology on _R is
D. S., there exists a sequence of domains V j’ such that w(CV C(r, p)
_B_B, w) 4 0 as n->o and D(w(C(rl, p) V, w, C(r., p))) < L, < o Now
since R0 is compact, we have w(CVn C(r_, p) B, w, R-- Ro) 0 by
w(CV C(r, p) B_, w) 0 as n. On the other hand, n(w) M in

R--Rno. Put U(z)--w(CVnC(rl, p) B_, w, R_-- R_o) in f-(_R--R0)
and U(z)-O in R--f-I(R_--R_o). Then U(z)-I on (GIf-(CV)B’)
(G1 f-l(CV) B) and D(U(z))MD(w(CV C(rl, p) B,w,R_-- Rno))
40 as n-. Whence by the Dirichlet principle
f-l(CY),z))_D(U(z))O as n-> and w(FG]GIB’]f-I(CV),z)
0. By w(FGGIB’f-(V),z) + w(F]GB’f-l(CY),z)
w(F G G B’, z) we have

w(F G G1 B’ f-(V), z) > 0 for a number n’.
Now since D(w(C(rl, p)] Vn,,w,C(r.,p)))< L,< , there exists a harmonic
function V(z) in G.--G such that V(z)-I in G V,, V(z)-O on G
and D(V,(z))< ML’, where G is a component of f-l(C(r., p)) containing

G1. Hence by the Dirichlet principle O<D(w(FGGIf-I(V,)B’,z)
D((o(FGGIf-I(Vn,)B’,z,G.)D(V(z)) and w(FGGI]f
(V,),z, G.)>O, whence there exists at least one component V of

f- I(Vn,) such that w(F G G1 V, z, G.) > 0. Put G G G1 V. Then
we have the lemma.

As for potentials we proved the following facts:

1) Z. Kuramochi" On the behaviour of analytic functions on the ideal boundary.
I, Proc. Japan Acad., 38, 150-155 (1962).
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1). Let R be a Riemann surface with positive boundary. We
suppose a-Martin’s topology is defined on R-B. Then B--B--Bg
is an F set of harmonic measure (capacity) zero, where a--K or N.

Lemma 1. a). If Gp,i-l, 2,...,1, then Gip. b). If Ggp,
then int (CG) p. c). vn(p) p. Hence we can define M(p)- f(Gi)"
GpeB and M"(p) is one point or a continuum.

Lemma 2. Let G and G’ be domains such that w(FBG,z,G’)
O(o(FBG,z, G’)>O), then there exists at least one point peFB
such that Gp.

Lemma 3. If dia(C)0, any component of f-l(C) does not
contain any point peB a-approximately such that M(p)>o, where
means diameter.
Lemma 4. If M(p)--q (one point), then there exists an asymp-

totic path L tending to p on which f(z)-->q.
Lemma 5. Let G be a domain in R. Then E[pB" Gp is a

G set in B (since B is an F, set, this is also a G set in R). Let

[Cn,} be a system, of circles with radius 1__ such that any circle C3n,j
n

with radius I is contained in a certain C,. Put T,--E[peB"
3np any component of f(C,) and S=E[p’M(p)O. Then S- [J

( T,i) is a G. set in R.

Remark. To prove the above assertions Lebesgue’s or Fatou’s
theorems are not used.

Theorem 4. a). Let F(z) be an analytic function from R into
R, where R is a Riemann surface with K-Martin’s topology and R__
is a surface with positive boundary and with H.M. topology. Then

M(p) f(G)’G p B, B[--B--B is an F, set of harmonic
measure zero and S--E[peB[ M(p)O is a G, set in B of
harmonic measure zero.

b). Let R be a covering surface with positive boundary and
with N-Martin’s topology over R__ with D.S. topology (R has null or
positive boundary). Suppose R is a covering surface of almost
finitely sheeted. Then M(p) is defined except an F set of capacity
zero and E[pB" M(p)O is a G set of inner capacitg zero.

Proof. Assume ( T,) has a closed set FB of positive harmonic

measure (capacity). Then w(F, z) > 0(w(F, z) 0). Let [C} be circles with

radius 1 such that intCR. Then Ow(F,z)<.w(FG,,z),
20n

where G, s a component of f-(C,). Hence there exists at least
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one G, such that w(F G,, z) O. Put G- G,. Similarly o(F G, z)

>0. Let C’ be a circle with radius 1 with the same centre as C3n
and let G be one domain of f-(C’) containing G. Then by Lemma
a) w(F G, z, G’) > O(o(F G, z, G’) > 0 by Lemma b), where G is a
domain in G. Hence by Lemma 2 there exists at least one point

pe(FB) such that G’p(G’p). On the other hand, C’ is contained

in a certain C, with radius 1 and by the assumption every component
n

-Cof f (,,) does not contain p. This is a contradiction, because G’
is contained in a component of f-(C,). Thus T, is a set of

harmonic measure zero (of inner capacity zero). Hence by Theorem
3 (proposition) S is a set of harmonic measure zero (of inner capacity
zero).

Original Fatou’s theorem. Let R be a disc [z[<l and let w-f(z)
be a bounded analytic function. Then f(z) has angular limits a.e.
on Iz[-1.

The fact that Stoilow’s topology on the w-sphere is H.S. is proved
without Fatou’s or Lebesgue’s theorem and every point on zl-1 is
K-minimal. Let pS. Then by Lemma 4 there exists an asymptotic
path L terminating at p on which f(z) converges. Hence by bounded-
hess of f(z),f(z)has angular limit a.e. on z[-1. Thus we have the
original Fatou’s theorem without using the Lebesgue’s theorem. Once
Fatou’s theorem is proved without Lebesgue’s theorem, harmonic
separativity of Green’s, N and K-Martin’s topologies is proved without
Lebesgue’s theorem. Thus theorem a) is proved without Lebesgue’s
theorem.

By Lemma a’) we can prove without Lebesgue’s theorem similarly
as a) the following

Theorem 4. a’). Let R be a Riemann surface with null-boundary
and with a topology which is homeomorphic to the original topology
in R. If w--f(z) is of F-type, then S is a G set of harmonic
measure zero.

Let R be a disc [zll and let __R be the w-Riemann sphere.

Every point on z]-I is N-minimal and an open set Gp(G--v(p)--"
v(p)--EEz’dist(z,p)l} if and only if the closed set -- ( is

the symmetric set of with respect to ]z I--l) is so thinly distributed
in v(p) as p is an irregular point for the Dirichlet problem in

v(p)----. Suppose the spherical area A(f(z)) of f(z) is finite.
Then Theorem 4. b) is valid. M(p)-q (one point). Then there exists a
neighbourhood v(p) and there exist points a, b, and c such that f(z)-a.
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or b or c in v(p). Hence f(z) has angular limit at p. Next a closed
set F on zl--1 is of positive capacity in our sense if and only if
F is of positive logarithmic capacity. Hence we have the following

Theorem of Beurling. Let f(z) be an analytic function in
[z[l. If the spherical area is finite, f(z) has angular limits on

]zl--1 except a set of inner capacity zero.
Theorem 4. a) and a’) have a close relation with that of Con-

stantinescu and Cornea. They proved by completely different manner
under the conditions 1). f(z) is of bounded type (or extended meaning

2). R has a K-Martin’s topology. Their method depends on Lebesgue’s
theorem and on the global property of the covering surface. On the
other hand, our method depend on the local property of the covering
surface. Hence our method is applicable to many topologies on _R.


