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(Comm. by Z. SUETUNA, M.J.A., June 12, 1962)

1. Introduction and terminology. We are concerned with show-
ing that the Denjoy-Khintchine process of integration for funections
of one real variable is capable of an essential generalization. The
gist of our theory consists in replacing the class of the generalized
absolutely continuous functions by a broader one composed of the
functions called generalized highly continuous in our phrasing.

As regards general terminology (and notation), we shall conform
on the whole to the Theory of the Integral by Saks, except in certain
minor points. The mentioned treatise will be quoted hereafter simply
as Saks for short. The conventions that follow will be valid through-
out. By sets and intervals, by themselves, we shall always understand
linear sets and linear non-degenerate intervals respectively, where
intervals may be infinite (i.e. unbounded). The epithets open and closed
for intervals will as usual be applied only to finite intervals. The
term function will stand exclusively for a point-function defined on
the whole real line and assuming finite real values, unless another
meaning is obvious from the context. Finally, a sequence will mean
a nonvoid countable one, finite or infinite.

2. Semiabsolutely and strongly semiabsolutely continuous func-
tions. Let F(x) be a function, E a set, and a« a number such that
0<a=1l. We say that F is semiabsolutely continuous (a) on E, or
briefly SC(a) on E, iff (i.e. if and only if) given any >0 there is an
7>0 such that for every finite sequence of non-overlapping closed
intervals I,,- -+, I, whose extremities belong to F, the inequality

LI+ +|LI"<y implies |F(L)|+---+|F(L)|<e.
Remember that whenever I is a closed interval, F'(I) denotes the
increment of the function F'(x) over I, while the image of I under
F will be written F[I] (see Saks, p. 99 and p. 100). When especially
a=1, the notion just introduced plainly reduces to the absolute con-
tinuity on E of the function F (Saks, p. 223).

We say further that F'is strongly semiabsolutely continuous (a),
or SSC(a), on E, iff F' is SC(a) on E and moreover the set E is of
a-dimensional volume zero (Saks, p. 54). When this is the case, E
is evidently a set of measure zero (in the Lebesgue sense).

The reference to the exponent « will be omitted in the above
two notions when we are interested only in the existence of «, not
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in its peculiar value. Thus a function F' is called to be SC or SSC
on a set K, iff there is in the interval (0,1] an exponent « (depend-
ing in general on both the function and the set) for which F is
respectively SC(a) or SSC(a) on E.

Let us enumerate some simple properties of semiabsolutely con-
tinuous functions. The exponent a will be kept fixed. (i) Every
Sunction which is SC(a) on a set E is so too on all the subsets of E
and 1is further SC(B8) on E for all the exponents B of the interval
(0, @). (ii) Every function which is continuous on a nonvoid set K
and which is SC(a) on a subset everywhere dense in E, is SC(a) on
the whole set E. (iii) A function which is SC(a) on a bounded set
18 always bounded on lhis set. (iv) Every linear combination, with
constant coefficients, of two functions which are SC(a) on a bounded
set, and the product of such functions, are themselves SC(a) on the
same set.

3. Highly and generalized highly continuous functions. We
shall term a function F(x) to be highly continuous (or HC) on a
set E, iff F' is either AC (absolutely continuous) on E or SSC on E.
Again, F' will be. called to be generalized highly continuous (or GHC)
on E, iff (a) the function F' is continuous on E and (b) the set E is
expressible as the union of a sequence of sets on each of which F'is HC.

Proposition (iv) of the preceding section has now the following
analogue: Every linear combination of two functions which are HC
[or GHC] on a bounded set, and the product of such functions, are
themselves HC [or GHC] on this set. The proof is immediate.

THEOREM. FEvery function which is GHC on a measurable set
is approximately derivable at almost all points of this set.

ProoF. If we replace, in the enunciation of the theorem, the
symbol GHC by GAC (i.e. generalized absolutely continuous), the
result is a known proposition (Saks, p. 223). Keeping this in mind,
suppose that a function F' is GHC on a measurable set E and choose,
as we clearly can, a subset E, of E such that F' is GAC on F, and
that E—E, is of measure zero. Since E, is then measurable together
with E, it follows at once that F' is approximately derivable at
almost every point of the set E,, and hence, at almost every point
of E itself.

4. An auxiliary theorem. We begin with a simple definition.
The union of the first n elements of a sequence of sets is called its
n-th partial union. Needless to say, if the sequence is finite and
consists of %k terms, the number 7 can only range over 1,2,--., k.

LEMMA. Given a distinct sequence 4 of open imtervals whose
union [4] is an interval, it is always possible to extract from
among the elements of 4 a distinct sequence 4*={A,, A,,---> which
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covers [4] already and each of whose partial unions is an interval.

REMARK. The sequence 4* need not be a subsequence of 4.

ProoF. In the first place we choose for A, any interval of the
sequence 4. If it happens that A,=[4], the singletonic sequence
(A,> will clearly serve our purpose. If the contrary is the case,
there must exist in 4 one or more intervals intersecting A, and not
lying in A,. For by hypothesis the union [4] is connected. Let A,
be the first one (in the order of 4) among such intervals. If then
A, ~A,=[4], the sequence {(A,, A,> has the required property. In
the opposite case we choose from 4 the first interval A, intersecting
the interval A4,—A, and not contained in A4,— A4, And so on we
proceed as long as this procedure is practicable. If our construction
comes at an end after a finite number of steps, we have nothing
more to prove. We may therefore assume in what follows that
the sequence 4*=d(A,, A,,--) thus obtained is infinite. Since evi-
dently 4* is distinet and all its partial unions are intervals, it only
remains to ascertain that [4*]=[4].

Suppose, if possible, that the contrary is true. By connectedness
of [4] there then exists in 4 an interval, say A, which intersects
[4*] without being covered by 4*. Therefore, for sufficiently large
n, say for n=mn, the m-th partial union of 4* always intersects A
without containing A. Recalling our construction of 4* we conclude
that for n>mn, the interval A, cannot appear in 4 later than A.
But this plainly contradicts the distinctness of the sequence 4*, and
the proof is complete.

THEOREM. Given a set E and a positive number &, suppose that
A(E), t.e. the &-dimensional volume of E, is finite. Then for any
e>0 we can cover the set E by a non-overlapping sequence of closed
intervals I, I,,- - - with diameters <& and such that

L+ L[+ <AL(E)+e.

PrOOF. By definition of A.() the set E admits a covering by
a distinct sequence @ of open intervals J,, J,,:-- with diameters <g,
in such a way that |J,[*+|J,[f+ - <A(E)+e As is readily seen,
we may suppose here that each interval of the sequence @ is maximal
in O, i.e. that no J, is contained in any other J,. Consider an arbi-
trary connected component, say D, of the union [@], so that D is an
endless interval, i.e. an interval which is an open set. We denote by
4 the subsequence of ® which consists of all the intervals of @ that
are contained in D. Since plainly [4]=D, we can apply the above
lemma to the sequence 4. Thus D is already covered by a distinct
sequence 4*={A4,, A,,---)> consisting exclusively of intervals of 4 and
all whose partial unions By, B,,--- are intervals. Here the sequence
B,, B,,--+ may without loss of generality be assumed to be strictly
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ascending.

Now write C,=B, and further C,=B,—B,_, for n>1 as long as
B, exists. It follows from our choice of 4* that C,,C,.-- then
constitute a disjoint sequence of finite intervals which lie respectively
in A, A,,--- and which together cover D. Replace each of these
intervals C,, C,--- by its closure and denote by ¥, the resulting
non-overlapping sequence of closed intervals, the subscript D indicat-
ing dependence on the interval D. Writing I generically for an
interval which appears in the sequence ¥, for some D, we arrange
all the intervals I in a distinct sequence I, I,,--- and find at once
that this sequence conforms to the assertion.

5. Further theorems on GHC functions. Whenever we speak
henceforward of an exponent, let it be tacitly understood that its
value shall belong, just as in §2, to the half-open interval (0, 1].

A function F'(x) is said to be Lusinian (a) on a set E, where
a is an exponent, iff for every set XCCFE of a-dimensional volume
zero, the image F[X] of X under the function F' is of measure
zero. When in particular a=1, this condition agrees with the con-
dition (N) of Lusin (see Saks, p. 224). Clearly, a function is Lus-
inian (a) on the union of a sequence of sets whemever the function
is s0 om each of the constituent sets. Again, every function which
4s Lusinian (a) on a set is Lusinian (8) on this set for all the
exponents B of the interval (0, a).

As is stated and proved on p. 225 of Saks, (a) every function
which is GAC on a set fulfils the condition (N) on this set, and (b)
if the approximate derivative of a function which ts GAC on a
closed interval I is mommegative almost everywhere on I, then the
Function is monotone non-decreasing on I, These two important
theorems will now be extended in what follows to the class of GHC
functions. Our notion of functions Lusinian on a set is intended to
be a machinery subservient to this purpose.

LEMMA. A function which is SC(a) on a set for an exponent
a 1s necessarily Lusinian (a) on this set.

ProOF. This may be established as for proposition (a) quoted
above, only we make use of the theorem of §4 in the proof.

THEOREM (i). FEwery function F which is GHC on a set E fulfils
on E the condition (N) of Lusin.

Proor. Without loss of generality we may suppose the function
F to be highly continuous on E, so that F' is either AC on E or
else SSC(a) on E for some exponent a. If the first alternative takes
place, F' satisfies the condition (N) on E by proposition (a) above.
On the other hand, the second alternative means that F is SC(a)
on E and that, moreover, E is of a-dimensional volume zero. Then,
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by the above lemma, the image F[FE] must be a set of measure
zero. This completes the proof.

THEOREM (ii). Every function which is GHC on a closed interval
I and whose approximate derivative is nonnegative almost every-
where on I, is monotone non-decreasing on I. In particular there-
Jore, if the approximate derivatives of two functions which are GHC
on I coincide almost everywhere on I, then the functions themselves
coincide on I identically apart from an additive constant.

ProoF. Using Theorem (i) just obtained, we may prove this as
for proposition (b) quoted above from Saks.

6. Descriptive definition of the quasi-Denjoy integral. Let f(x)
be an extended-real function defined over the real line. We term f
to be Q-integrable on a closed interval I iff there exists a function
F(x) which is GHC on I and which has f(x) for its approximate
derivative almost everywhere on I (so that f must be finite almost
everywhere on I by the theorem of §3). We then say that, on the
interval I, the function F'is an indefinite Q-integral of f. Its increment
F(I) over I is called definite Q-integral of f over I and is denoted
by Q(f; I).

The symbol @ has been used above as an abbreviation for the
term quasi-Denjoy. For uniformity of notation, we shall also employ
the symbols L and D to mean the epithets Lebesgue and Denjoy-
Khintchine respectively.

The definite integral Q(f; I), when existent, is uniquely determined.
For, by Theorem (ii) of the foregoing §, any two functions which
are, on the interval I, indefinite integrals of f, can only differ on I
by an additive constant. More generally, if two extended-real functions
are equal almost everywhere on a closed interval I and the ome s
Q-integrable on I, them so is the other and the two functions have
the same definite integral on I.

It is evident that every function which is GAC on a set is GHC
on the same set. In consequence, an extended-real function f which
is D-integrable on a closed interval I is always Q-integrable on I
and we have Q(f; I)=bD(f;I). Furthermore, we deduce easily with
the aid of Theorem (ii) just quoted that every extended-real function
which is Q-integrable and almost everywhere nonnegative on a closed
interval s L-integrable on this interval.

Another property of our integral worth while mentioning is that
it is a linear functional of the integrand. Thus, #f two finite func-
tions g and b are both Q-integrable on a closed interval I, the same
s true of any linear combination ag-bh, with constant coeffictents,
of these functions and we have

Q(ag+bdh; I=a-Q(g; I)+b-Q(h; I).
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7. Example. We proceed now to ascertain, by constructing a
concrete family of GHC functions, that our integration is actually
more comprehensive than Denjoy-Khintchine integration. Let ¢ be
a fixed exponent other than 1 (so that 0<d<1) and let us consider
any closed interval I=[a,b]. We take in the interior of I a strictly
increasing infinite sequence of points a,<a,<--:- tending to the point
b, and we write a,=a for uniformity of notation. It is easy to see
that if this sequence a,<a,<--- is suitably chosen, then there exists
a nonnegative continuous function P(x) vanishing outside the interval
I and fulfilling the following five conditions (the letter n stands for
a natural number throughout this section):

(i) The function P is a constant on each of the closed intervals
[Qgn-1, Bgn]; (1) P(x) is linear in x, but not a constant, on each of the
intervals [a,,, @s,,.]; (iii) P(x) is not of bounded variation on I; (iv)
we have the inequality | P(J)|<|J |’ for every closed interval J (which
need not lie in I); (v) the sum, for all n, of the power (a,,—a,,_;)°
is less than (1/2)-|I|’.

Suppose that for each I=[a,b] the sequence a,<a,<--- and
the function P(x) have been uniquely chosen so as to conform to the
above stipulation. To avoid ambiguity, we shall write P([; x) instead
of P(z) henceforth. It is convenient to introduce here a temporary
concept. Given any continuous function F'(x), let K denote generically
a maximal closed interval situated in the unit interval U=[0, 1] and
on which F'(x) is a constant. (Of course such intervals K need not
always exist.) By the indentation of the function F' we then under-
stand the sum G(z)=3>) P(K; x), where the summation extends over
all the intervals K and where a possible void sum means zero. As
we may verify at once, the indentation G thus associated with F'is a
continuous nonnegative function vanishing outside U and fulfilling
|G(J)|<|J|* for every closed interval J. We therefore have also
G(x)<1 for every z.

Now, we construct an infinite sequence of nonnegative continuous
functions P,(x), Py(x),--- by induction as follows: P,(x) means the
identically vanishing function, and for each » the function P,.,(x)
means the sum P,(x)+2"H,(x), where H, stands for the indentation
of P,. When n—+ oo, the function P,(z) plainly tends uniformly to
a definite limiting function nonnegative and continuous, which we
denote by Pyx). The function P, thus defined is GHC on U (and
even on the whole real line) without being GAC on U, and so the
approximate derivative of P, is Q-integrable on U without being D-
integrable on U. The proof for this will be given elsewhere.



