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By Mitsuru NAKAI
Mathematical Institute, Nagoya University

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1962)

Throughout this note, we always assume that R is an open
Riemann surface with null boundary and (R),%0 is a normal exhaus-

tion of R such that R--Ro is connected. An Evans potential p(z)
on R is a harmonic function with one negative logarithmic singularity
at a point of R such that lim,inf_p(z)--o. Kuramochi)

proved the existence of Evans potential on R. Although his argu-
ment is very interesting and contains wide generality, it is some-
what complicated and difficult to follow. So we give here a simple
shorter alternating proof. We shall take Cech boundary as the ideal
boundary of R, which makes automatically the Green kernel conti-
nuous) with respect to one variable. But we shall abandon to prove
the symmetricity of Green kernel at the ideal boundary and to supply
this disadvantage, we shall make some trick for the evaluation of
the transfinite diameter of the ideal boundary. We shall prove the
following

THEOREM. There exists a harmonic function u(z) on R--Ro with

value zero on Ro such that f*du--2= andboundary

lim. inf_.u(z)-
In virtue of the linear operator method of Sario,) the existence

of Evans potential follows at once from the above theorem. In fact,
let L be a normal linear operator of Sario on R--3Ro and s(z) be
the harmonic function with singularity such that --s(z) is equal to
the Green function go(Z,W) in Ro with pole w in R0 and s(z) is

equal to u(z) in Theorem in R--Ro. Since *ds--O, the equation

p--s--L(p--s) has a solution on R, which is an Evans potential on R.
1. Green kernel on Cech compactification. Let R* be the

ech compactification of R, i.e. the compact Hausdorff space contain-
ing R as its dense subspace such that any bounded continuous func-
tion on R is continuously extended to R*. Since R is completely
regular, R* exists uniquely.4) Moreover, since R is locally compact,

1) Osaka Math. J., 8, 119-137 (1956).
2) Hereafter, a continuous function means [- oo, oo]-valued continuous.
3) Trans. Amer. Math. Soc., 72, 281-295 (1952).
4) E. ech: Ann. of Math., 38, 823-844 (1937).
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R is open in R*. We denote by F the compact set R*--R, which
is called the Cech boundary of R. We remark one more fact that
any continuous function f(z) on R is continuously extended to R*
uniquely. In fact, let g(z)--max (f(z), O) and h(z)--g(z)--f(z) on R.
Then (l+g(z))- and (l+h(z))- are bounded continuous functions on R
and so extended continuously to R*. Hence the same is true for g(z)
and h(z). We denote the extended functions by the same notations.
Assume that g(p)--o at a point p in R*. Then we can find a neigh-
borhood U of p such that g>0 on U and so f>0 on UR and h=0
on UR. As R is dense in R*, so h(p)-0. Similarly, h(p)--o implies
g(p)--O. Thus the expression g(p)--f(p) on R* has a definite meaning
and gives a continuous extension to R* of f. Since R is dense in
R*, the extension is unique.

Let g(z, w) be the Green function on R--Ro with pole w. We
set g(z, w)-O if at least one of z and w belongs to R0. Then, since
g(z,w)-g(w,z) is continuous on (R--Ro)(R--Ro), thus extended
function g(z, w) is continuous on RR. Hence if we fix one variable
in R, g(z, w) is continuously extended to R* with respect to the other
variable. For (z, p) in RF, we set

g(z, p)--lim g(z, w).
If we fix p in F, then g(z, p) is continuous on R and harmonic on

R--Ro and vanishes on Ro. In fact, clearly g(z, p)--O on Ro. So we
have to show that g(z, p) is harmonic on R--Ro and vanishes conti-

nuously at 3R0. Let Zo be a point in R--Ro. Given an arbitrary
positive number z. By Harnack’s inequality, we can find a disc K
with center z0 such that for any z in K and w in R--Ro--K, we have
g(z, w)--g(Zo, w) . Hence by letting w-->p, ]g(z, p)--g(Zo, P) - for

any z in K. This shows that g(z, p) is continuous on R--Ro. Next
take a countable dense subset (z) in R--Ro. Since g(z, w)-->g(z, p)
(T->p), we can find sequences (U.),% of neighborhoods of p such that
(RU,)-- and U.U., U/, and limsup.,lg(z, w)
--g(z, P) --0. Let V,--R U,.. Then lim supr,.] g(z, w)--g(z, P)
=0 for any k--1,2,3,.... Fix a point w in Vs. The sequence
(g(z, w))%1 converges to g(z, p) on the dense set (zk). Again by
Harnack’s inequality, it converges to a harmonic function u(z) on

R--Ro. Hence u(z)--g(z, p) on (zk) and since g(z,p) is continuous on

R-- R0, and g(z, w.) 0 on 3R0,
( 1 ) g(z, p)-lim g(z, w)
uniformly on each compact subset of R--Ro.

Since g(z, p) is continuous on R, it is extended continuously to
R*. From hitherto considerations, we may define Green kernel G(p, q)
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on (R*--Ro) (R*--Ro) by
G(p, q) lim_0

_
(lim __o,_..q g(z, w)).

From this definition, it is clear that G(p,q)-g(p,q) in R--Ro, i.e.
G is an extension of g. It is also clear that if at least one of p
and q belongs to R--Ro, then G is symmetric, i.e.
( 2 G(p, q)-G(q, p).
Notice that we do not claim G(p, q)-G(q, p) for p and q in F. Since
G(z, q)-g(z, q) for (z, q) in (R--Ro) F, if we fix q in F, then G(p, q)
is continuous on R*--Ro and harmonic on R--R0 and vanishes on

R0. Again notice that we do not claim the continuity of G(p, q)
with respect to q at F for fixed p in F. Moreover we have for a

fixed q in R*--Ro,

j* e(z,
In fact, let qeR--Roand Vbea disc with center q such that VR--Ro
(nn0) and vn(z) be harmonic in Fn--R--Ro--V with boundary value

on 3RQ[.J3V and 0 on 3R. By Green’s formula, D,,(v, G)--f*dG1

f f f+ *dG. Since v’l and *dG--2z, we get *dG(z,q)--2:r.
V V O.Ro

Next suppose qeF. By (1), we can find a sequence (win) in R--Ro
G(z, wm).->G(z, q)(m->) on R--Ro. Hence f*dG(z, q)-limnsuch that

f*dG(z, w)--2. 820

2. Transfinite diameter of /’. For each compact set K in
R*--Ro, we set

(n)Dn(K) inf "’"< G(p, p)
The sequence (D(K))%l is non-decreasing, since the usual proof of
this need not the symmetricity of kernel.5) Hence we can define

D(K)- lira. D(K).
Then D(K) increases as K decreases. Similarly we set

n En(K)--sup,,....,K infE -,= G(p, p).
It is clear that (m+n)E/(K)>_mE,(K)+nE(K). Hence the se-
quence (E(K))’2= converges and so we can define5)

E(K) --lim....o E,(K).
For these two quantities, we get
4 E(K) D(g).

In fact, fix a positive integer n and a point p in K. Since G(p, p)

5) See, for example, M. Tsuji" Potential Theory in Modern Function Theory, Maruzen,
Tokyo (1959). See also M. 0htsuka: Topics on Function Theory, KySritsu, Tokyo (1957)
(in Japanese).
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s continuous on R*--Ro n p, we can find a point p_ in K such
that G(p_,p)-nfG(p,p) and the rght term <_E(K)and so
G(pn-1, pn)_EI(K). Smlarly, snce G(p, p_)+G(p, p) s continuous
on R*--Ro n p, we can find a point P-2 n K such that G(p_2, p_)
+G(p_2, p)-nf(G(p,p_)+G(p,p)) and the right hand term
2E2(K) and so G(p_2, p-)+G(p-2, p)2E2(K). Repeating ths
process, we get n points p, p_, P-2,’", P2, P n K such that

=_+ G(p_, p) iE(K) (i- 1, 2,..., n-- 1).
Summing up these n 1 nequaltes, we get <G(p,
iE(g), or /

By letting n n the above nequalty, we get (4).
For smplicty, we set K-R*--R and B--3R. Then

5 D(K)--D(B).
In fact, t s sufficient to show that D(K)=D(B). Clearly D(K)
D(B). So we have only to show D(K)D(B?). For the aim,
take n arbitrary points p,, p,2,..., p, in K. The number a
=<G(p,, p,) is the sum of h(p,)-=G(p,, p,) and
<,,G(p,, p, ). The function h(z) s positive harmonic on R--R
except at most a finite number of possible logarithmic pole. So h(z)
takes ts minimum on B--3R. In fact, let $--mn h(z). Contrary
to the assertion, assume that (zeR--R; h(z)s)# for some s<t.
Let F be a component of ths set. Then, since s--h(z) is a bounded
harmonic function on F vanishing on 3F and not constant, FSO,.
Ths s a contradiction, snce Re0.6 Hence we can find a point
P2, in B such that h(p2,)h(p,). Let P2,=P,(J#I) and a2
=<G(p2,, p2,). Then aa2. Notice that G(p2,, p2,2)-G(p2,2, P2,),
since P2, s n R--Ro. Then a2 is the sum of h2(p2, 2) ,G(p2, 2, p2,)
and <;,2 G(p2,, P2, ). Similary as above, h2(z) takes its mnmum
on B and so we can find a point P,2 n B such that h2(p,2)

h2(p2, 2). Let p, -- P2, (J# 2) and a-<G(p, , p, ). Then a2 a.
Repeating ths process, we finally get n points p,, p,2,. .,p, n
B such that

which proves our assertion (5).
We define one more quantity only for B. Let (Z) be the family

of unit Borel measures on B and I(p) be the energy integral

ff6(z, w)dz(z)dz(w) and set

W(B) inf I(z).
Since G(z, w) s a positive, symmetric and continuous kernel on B,
it s well known that

6) See, for example, T. Kuroda: Osaka Math. J., 6, 231-241 (1954).
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6 ) D(B)- W(B,).
Moreover, we have
7 limW(B)--.

In fact, since G(z, w) is a usual potential theoretic kernel on (R--Ro)
(R--Ro), there exists a Z in (/) such that I(Z)--W(B,) and the

function U(z)=fG(z, w)dz(w) is equal to the constant m-- W(Bm)
on B except a polar set in B.) Clearly U(z) is harmonic on

R--Ro and vanishes on 3Ro and so U(z)-cw(z) in R--Ro, where

w(z) is the harmonic function in R--Ro with w=l on 3R and
w=0 on 3Ro. By Green’s formula and (3),

f f*dw =f*dU 
o o

whence c 2z/D_,(w) (m), since w 1.

3. Proof of Theorem. From (4), (5) and (6), E(F) D(F) D(K)
=D(B)--W(B) (m--l, 2,...). Thus by (7), E(F)-- or limE(F). Hence we can find a suitable subsequence ( )= such that
E(F)2-(k-I, 2,...). Let be the Borel measure on F with
total measure 2- such that (p,)--l/n2 (i1, 2,..., n), where
p. (i--1,..., n) are chosen in F so as to satisfy

inf rG(p, pg,)n2-.
This is possible by the choice of (n). Let

u(p) fG(p, q)d(q) G(p, p, t)/n2k.

Clearly u(z) is harmonic in R--Ro and vanishes on 3Ro and continuous
on R*--Ro. So there exists a neighborhood V of E such that
u(p)> 1/2 on V, since u(p) > 1/2 on F.

Here we remark that G(z, q)-G(q, z) is finitely continuous for
(z, q)e(R--Ro)F. In fact, G(z, q) is harmonic in ze(R--Ro) for fixed
qeF and finitely continuous in qeF for fixed ze(R--Ro) and so by
applying Harnack’s inequality, we get our assertion.)

Let Z==p. Then Z is a Borel measure on F with
Set

u(z) fG(z,

Then u(z) is harmonic on R--Ro and vanishes on OR0. Clearly
U

rR._R,)--F,on R*--Ro. As R*--R, is a neighborhood of F and ,=
7) Cf. Lemma 3.1 at p. 445 in M. Heins" Ann. of Math., 61 (1955).
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so for each k, there exists n such that R*--RV V... V.
Hence

inf_.u(z) > k/2 (m >_ n).
Thus we have

lim inf_,u (z)= .
By (3), we see that

f*du-- f(f *da(z,
.o o


