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By Sabur6é UCHIYAMA
Department of Mathematics, Hokkaidd University, Sapporo, Japan
(Comm, by Zyoiti SUETUNA, M.J.A., Sept. 13, 1965)

Let a, (=0,1,2, ---) be a sequence of algebraic integers. In
1920 G. Polya [2] proved that if > ,ma,2" is a rational function
of z, then so is >~ ,a,2". This result has recently been generalized
by D. G. Cantor [17, who showed that if f(x) is a non-zero polynomial
in ¢ with arbitrary complex coefficients and if >o,f(n)a,2"” is a
rational function, then >3, a,2" is again a rational function. In the
present note we shall prove the following theorem which is a gener-
alization of the above result due to Pélya in another direction:

Theorem. Let a, (n=0,1,2,---) be a sequence of numbers
belonging to a fixzed module over the ring of rational integers with
a finite basis in the field of complex numbers. If Sy ,na,2" is a
rational functiow, then so is also >17,a,z".

It is quite easy to see that if the a, are algebraic integers and
if S ,na,z" is a rational function, then there exists a finite algebraic
extension %k of the field of rational numbers such that the ring o(k)
of algebraic integers of %k contains all of the a,; and, as is well
known, the ring o(k) has as a module a finite basis over the ring of
rational integers.

1. Lemmas. Let K, be an arbitrary field of characteristic 0
and K, a field containing K,. We require the following two lemmas
which are substantially proved in [2; pp. 4-5].

Lemma 1. Let A(z) be a non-zero polynomial of K.,[z] and
write

A(R)=(Py(z))* - - - (PL(2))r,
where P(z), ---, P(2) are distinct irreductble polynomials in K,[2]
and e, +++, e, are positive integers. If B(z) s a polynomial of
K,[z], then we have
B() _<\_Bi2)
A(z) = (Pi(2))s
for some polynomials By(z), -, B,(2) of K,[2].

Proof. Clear.

Lemma 2. Let P(z) be an irreducible polynomial of K,[2z] and
Q(z) be a polynomial of K,[z]. Let e be a positive integer. Then
there exist a rational function ¢(z) of K,(z) and a polynomial R(z)
of K,[z] with deg R(z)<deg P(z) such that
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Q) _ d R(z)
Py da" Ot PR
Proof. The result is obvious for e=1. Suppose that the lemma

is true for e=e¢. Since K, and hence K, is assumed to be of charac-
teristic 0, P(z) and P’(z) are relatively prime as polynomials of K,[z]
and we can find two polynomials S(2) and T(z) in K,[z] satisfying

S(2)P(2)+ T(z)P'(2) =Q(z).
Define the polynomials H(z) and Q.(z) of K,[2] by the relations:

T(z)=—eH(z), S()=H'(z)+Q.(?).
Then we have
Q(z) = (H'(2) + Q.(2))P(z) — eH(2)P'(2) ,

whence

Q) _ d ( H(z) ) O

(PR dz \ (P(2)) (P()y
Thus the lemma is true for e=e¢+1. Our proof is now complete by
induction.

2. Proof of the theorem. We denote by R the field of rational
numbers, by Z the ring of rational integers, and by M a Z-module
with a finite basis (&, ++-, &,) in the field of complex numbers.
Suppose a,e€ M (=0,1,2, ---). Then a, can be written uniquely
in the form

Q=W &4 o U, uEm
with %,,, «+, Up,, N Z.

Let K be the field obtained from R by adjoining the complex
numbers &, ---, &,. We distinguish two cases according as K is or
is not algebraic over R.

Case 1: K is algebraic over R. In this case K is a finite
algebraic extension of R and &, ---, &, are algebraic numbers. There
exists, therefore, a non-zero rational integer a such that the numbers
a&,, --+,a&, are all algebraic integers in K, so that aa, (#=0,1,2, --.)
are algebraic integers. The theorem follows from the original result
of Polya if we simply replace there a, by aa, for each n.

Case 2: K is not algebraic over B. Then K is of the form

KZR(Gly s, 0y T)y
where o, ---, 0, (s=1) are complex numbers which are algebraically
independent over R and 7 is a complex number which is algebraic
over the purely transcendental extension

KOZR(GH ct 08)
of R. We may assume without loss of generality that 7 is integral
over the polynomial ring R[o,, +--, 0,].

In what follows we shall use the abbreviation ¢ for the set
0y, +++, 0, thus, for example, K=R(o, 7).
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The generators &, ---, &, of the module M can now be written
as rational functions of ¢ and z. In fact, we have
_ Xi(o, 7) —1 ...
&k ——X(*b_“)'— (k=1, , M),
where X,(o,7)e R[o,7] (k=1, -+, m) and X(o)e R[o].

Suppose now that the function >3, na,2” be rational. This is
equivalent to suppose that the funetion >}, na,2"* be rational, and
so there are a non-zero polynomial A(z) in K,[z2] and a polynomial
B(z) in K[z] such that

BG&)

> n—1 __
Z}lnanz Q)"

Let P(z), ---, P(2) be distinct irreducible factors of A(z) in
K,[z]. By virtue of Lemmas 1 and 2 applied to K, = K,, K, = K,

we have then
_ R(?)
2 ne,2" 1~—«#(ﬁ)+ 2
Pi(2)
for a rational function +(z) in K(z) and some polynomials R;(z) (7=
-, 1) in K[z] with deg R;(z)<deg P;(z) (=1, +--,7). We wish
to show that the second term on the right-hand side of this equality
is 0 (i.e. vanishes identically in z). For, otherwise, since we have
for n=1,2, ---
Z ulc,nXk(g’ T)

—_—kE:l uk,nsk—iif(of)—_” (ul,n’ sty Up,n € Z)’

there would be non-zero elements u=wu(o), v=v(0) in Z[o] such that
if we write

u(glno&n('uz)”‘1 —ap(vz)) glncnz”"l,

d(vz2)
then ¢, e Z[o,7] (n=1, 2, --+), and, moreover, we have
T + q o o
w3 TAs) 5 e, (az1),

j=t Pi(vz) i= 1—w;zz
where the «; are non-zero and algebraically integral over Z[o] and
the w,; are non-zero, mutually distinet, and algebraically integral
over Z[o]. It would then follow that

QWO+ W+« « + @, WT="mne, (n=1,2, -.-).

We now take an arbitrary rational prime p and consider the
equations

a1w{p+a2w§p+ e +aqw<j1p=jpcjp (.7:1’ 2’ °t %y Q)-

By elimination we get from these equations
a, det D=det D,,
‘where D is the matrix
(wgp)idﬂ,---,q
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and D, is the one obtained from D by replacing the first column
(WP)jz,....s Y (JDCip)i=1,....cc The determinant det D is equal to
@? -+« @? times the Vandermonde determinant |w{—"*|;;.,,..., and
consequently (det D)* is an element of Z[o]. If we set

3(0‘):(01' ¢ 'wq H (wu—‘wv)’
1su<vsg

then (6(0))* is a non-zero element of Z[o] and
(det D)= (d(a))* (mod p).
Let N designate the norm with respect to K/K, and d be the
degree of a, over K,. Then
F\(0)=(Na,)(det D)*
is a polynomial of Z[o] whose coefficients are all divisible by p.
Hence p must divide all the coefficients of the non-zero polynomial
F(o)=(Na,)(6(a))*
in Z[o]. However, it is apparent that this is possible only for a
finite number of rational primes p, which contradicts the arbitrariness
of the choice of .
Thus we have

S1naz-i= %)
=1 dz
and, by integration,

3 0,2" =)~ ¥ () +
concluding the proof of our theorem.
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