113. On a Theorem of G. Pólya

By Saburô Uchiyama

Department of Mathematics, Hokkaidô University, Sapporo, Japan (Comm. by Zyoiti Suetuna, M.J.A., Sept. 13, 1965)

Let a_n $(n=0,1,2,\cdots)$ be a sequence of algebraic integers. In 1920 G. Pólya [2] proved that if $\sum_{n=0}^{\infty} na_nz^n$ is a rational function of z, then so is $\sum_{n=0}^{\infty} a_nz^n$. This result has recently been generalized by D. G. Cantor [1], who showed that if f(x) is a non-zero polynomial in x with arbitrary complex coefficients and if $\sum_{n=0}^{\infty} f(n)a_nz^n$ is a rational function, then $\sum_{n=0}^{\infty} a_nz^n$ is again a rational function. In the present note we shall prove the following theorem which is a generalization of the above result due to Pólya in another direction:

Theorem. Let a_n $(n=0,1,2,\cdots)$ be a sequence of numbers belonging to a fixed module over the ring of rational integers with a finite basis in the field of complex numbers. If $\sum_{n=0}^{\infty} na_n z^n$ is a rational function, then so is also $\sum_{n=0}^{\infty} a_n z^n$.

It is quite easy to see that if the a_n are algebraic integers and if $\sum_{n=0}^{\infty} na_n z^n$ is a rational function, then there exists a finite algebraic extension k of the field of rational numbers such that the ring $\mathfrak{o}(k)$ of algebraic integers of k contains all of the a_n ; and, as is well known, the ring $\mathfrak{o}(k)$ has as a module a finite basis over the ring of rational integers.

1. Lemmas. Let K_1 be an arbitrary field of characteristic 0 and K_2 a field containing K_1 . We require the following two lemmas which are substantially proved in [2; pp. 4-5].

Lemma 1. Let A(z) be a non-zero polynomial of $K_{\scriptscriptstyle 1}[z]$ and write

$$A(z) = (P_1(z))^{e_1} \cdots (P_r(z))^{e_r},$$

where $P_1(z), \dots, P_r(z)$ are distinct irreducible polynomials in $K_1[z]$ and e_1, \dots, e_r are positive integers. If B(z) is a polynomial of $K_2[z]$, then we have

$$\frac{B(z)}{A(z)} = \sum_{j=1}^{r} \frac{B_{j}(z)}{(P_{j}(z))^{e_{j}}}$$

for some polynomials $B_1(z), \dots, B_r(z)$ of $K_2[z]$.

Proof. Clear.

Lemma 2. Let P(z) be an irreducible polynomial of $K_1[z]$ and Q(z) be a polynomial of $K_2[z]$. Let e be a positive integer. Then there exist a rational function $\phi(z)$ of $K_2(z)$ and a polynomial R(z) of $K_2[z]$ with deg $R(z) < \deg P(z)$ such that

$$\frac{Q(z)}{(P(z))^e} = \frac{d}{dz}\phi(z) + \frac{R(z)}{P(z)}.$$

Proof. The result is obvious for e=1. Suppose that the lemma is true for e=e. Since K_1 , and hence K_2 , is assumed to be of characteristic 0, P(z) and P'(z) are relatively prime as polynomials of $K_2[z]$ and we can find two polynomials S(z) and T(z) in $K_2[z]$ satisfying

$$S(z)P(z)+T(z)P'(z)=Q(z)$$
.

Define the polynomials H(z) and $Q_1(z)$ of $K_2[z]$ by the relations:

$$T(z) = -eH(z), \quad S(z) = H'(z) + Q_1(z).$$

Then we have

$$Q(z) = (H'(z) + Q_1(z))P(z) - eH(z)P'(z)$$
,

whence

$$\frac{Q(z)}{(P(z))^{e+1}} = \frac{d}{dz} \Big(\frac{H(z)}{(P(z))^e} \Big) + \frac{Q_1(z)}{(P(z))^e}.$$

Thus the lemma is true for e=e+1. Our proof is now complete by induction.

2. Proof of the theorem. We denote by R the field of rational numbers, by Z the ring of rational integers, and by M a Z-module with a finite basis (ξ_1, \dots, ξ_m) in the field of complex numbers. Suppose $a_n \in M$ $(n=0, 1, 2, \dots)$. Then a_n can be written uniquely in the form

$$a_n = u_{1,n}\xi_1 + \cdots + u_{m,n}\xi_m$$

with $u_{1,n}, \dots, u_{m,n}$ in Z.

Let K be the field obtained from R by adjoining the complex numbers ξ_1, \dots, ξ_m . We distinguish two cases according as K is or is not algebraic over R.

Case 1: K is algebraic over R. In this case K is a finite algebraic extension of R and ξ_1, \dots, ξ_m are algebraic numbers. There exists, therefore, a non-zero rational integer a such that the numbers $a\xi_1, \dots, a\xi_m$ are all algebraic integers in K, so that aa_n $(n=0, 1, 2, \dots)$ are algebraic integers. The theorem follows from the original result of Pólya if we simply replace there a_n by aa_n for each n.

Case 2: K is not algebraic over R. Then K is of the form

$$K=R(\sigma_1, \cdots, \sigma_s, \tau),$$

where $\sigma_1, \dots, \sigma_s$ $(s \ge 1)$ are complex numbers which are algebraically independent over R and τ is a complex number which is algebraic over the purely transcendental extension

$$K_0 = R(\sigma_1, \cdots, \sigma_s)$$

of R. We may assume without loss of generality that τ is integral over the polynomial ring $R[\sigma_1, \dots, \sigma_s]$.

In what follows we shall use the abbreviation σ for the set $\sigma_1, \dots, \sigma_s$: thus, for example, $K=R(\sigma, \tau)$.

The generators ξ_1, \dots, ξ_m of the module M can now be written as rational functions of σ and τ . In fact, we have

$$\hat{\xi}_k = \frac{X_k(\sigma, \tau)}{X(\sigma)}$$
 $(k=1, \dots, m),$

where $X_k(\sigma, \tau) \in R[\sigma, \tau]$ $(k=1, \dots, m)$ and $X(\sigma) \in R[\sigma]$.

Suppose now that the function $\sum_{n=0}^{\infty} na_n z^n$ be rational. This is equivalent to suppose that the function $\sum_{n=1}^{\infty} na_n z^{n-1}$ be rational, and so there are a non-zero polynomial A(z) in $K_0[z]$ and a polynomial B(z) in K[z] such that

$$\sum_{n=1}^{\infty} n a_n z^{n-1} = \frac{B(z)}{A(z)}.$$

Let $P_1(z), \dots, P_r(z)$ be distinct irreducible factors of A(z) in $K_0[z]$. By virtue of Lemmas 1 and 2 applied to $K_1 = K_0$, $K_2 = K$, we have then

$$\sum_{n=1}^{\infty} n a_n z^{n-1} = \frac{d}{dz} \psi(z) + \sum_{j=1}^{r} \frac{R_j(z)}{P_j(z)}$$

for a rational function $\psi(z)$ in K(z) and some polynomials $R_j(z)$ ($j=1,\dots,r$) in K[z] with deg $R_j(z) < \deg P_j(z)$ ($j=1,\dots,r$). We wish to show that the second term on the right-hand side of this equality is 0 (i.e. vanishes identically in z). For, otherwise, since we have for $n=1,2,\dots$

$$a_n = \sum_{k=1}^m u_{k,n} \xi_k = rac{\sum_{k=1}^m u_{k,n} X_k(\sigma, au)}{X(\sigma)} \qquad (u_{1,n}, \cdots, u_{m,n} \in Z),$$

there would be non-zero elements $u=u(\sigma)$, $v=v(\sigma)$ in $Z[\sigma]$ such that if we write

$$u\left(\sum_{n=1}^{\infty}na_{n}(vz)^{n-1}-\frac{d}{d(vz)}\psi(vz)\right)=\sum_{n=1}^{\infty}nc_{n}z^{n-1},$$

then $c_n \in Z[\sigma, \tau]$ $(n=1, 2, \cdots)$, and, moreover, we have

$$u\sum_{j=1}^{r}\frac{R_{j}(vz)}{P_{j}(vz)}=\sum_{i=1}^{q}\frac{\alpha_{i}\omega_{i}}{1-\omega_{i}z} \qquad (q\geq 1),$$

where the α_i are non-zero and algebraically integral over $Z[\sigma]$ and the ω_i are non-zero, mutually distinct, and algebraically integral over $Z[\sigma]$. It would then follow that

$$\alpha_1\omega_1^n+\alpha_2\omega_2^n+\cdots+\alpha_q\omega_q^n=nc_n \qquad \qquad (n=1,\,2,\,\cdots).$$

We now take an arbitrary rational prime p and consider the equations

$$\alpha_1\omega_1^{jp}+\alpha_2\omega_2^{jp}+\cdots+\alpha_q\omega_q^{jp}=jpc_{jp} \qquad \qquad (j=1,\,2,\,\cdots,\,q).$$

By elimination we get from these equations

$$\alpha_1 \det D = \det D_1$$

where D is the matrix

$$(\omega_i^{jp})_{i,j=1,\ldots,q}$$

and D_1 is the one obtained from D by replacing the first column $(\omega_1^{jp})_{j=1,\dots,q}$ by $(jpc_{jp})_{j=1,\dots,q}$. The determinant $\det D$ is equal to $\omega_1^p \cdots \omega_q^p$ times the Vandermonde determinant $|\omega_i^{(j-1)p}|_{i,j=1,\dots,q}$ and consequently $(\det D)^2$ is an element of $Z[\sigma]$. If we set

$$\delta(\sigma) = \omega_1 \cdots \omega_q \prod_{1 \leq \mu < \nu \leq q} (\omega_\mu - \omega_\nu),$$

then $(\delta(\sigma))^2$ is a non-zero element of $Z[\sigma]$ and

$$(\det D)^2 \equiv (\delta(\sigma))^{2p} \pmod{p}$$
.

Let N designate the norm with respect to K/K_0 and d be the degree of α_1 over K_0 . Then

$$F_1(\sigma) = (N\alpha_1)^2 (\det D)^{2d}$$

is a polynomial of $Z[\sigma]$ whose coefficients are all divisible by p. Hence p must divide all the coefficients of the non-zero polynomial

$$F(\sigma) = (N\alpha_1)^2 (\delta(\sigma))^{2dp}$$

in $Z[\sigma]$. However, it is apparent that this is possible only for a finite number of rational primes p, which contradicts the arbitrariness of the choice of p.

Thus we have

$$\sum_{n=1}^{\infty} n a_n z^{n-1} = \frac{d}{dz} \psi(z)$$

and, by integration,

$$\sum_{n=0}^{\infty} a_n z^n = \psi(z) - \psi(0) + a_0,$$

concluding the proof of our theorem.

References

- [1] D. G. Cantor: On arithmetic properties of coefficients of rational functions. Pacific J. of Math., 15, 55-58 (1965).
- [2] G. Pólya: Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen. J. Reine u. Angew. Math., 151, 1-31 (1921).