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Let P be a topological property.” A topological space X is
called a P* space if a subset U of X is open in X whenever
UNK is open in K for any subset K in X satisfying P. The
purpose of this note is to investigate properties of P* spaces and
as applications to obtain some extensions of a theorem of Gleason
[2] and the Ascoli’s theorem.

1. Let E be a set, then we can consider the lattice of all
topologies on FE, that is, the ordering of the lattice can be defined
as follows; X=Y if O(X)>0(Y), where O(X) (or O(Y)) is the set
of all open subsets in X (or Y). For any family {X;} of topological
spaces on E, VX; or ANX; denotes the join or the meet of {X;}
([4], [6]). A topological property P is said to have the condition
(C) if it satisfies the following condition; any space consisting of
one point has P, and any continuous image of X also satisfies P if
a topological space X has P. Examples of topological properties
having (C) are “compact”, ‘“separable”, “connected”, and “arcwise
connected”,® and any k-space ([5]) is a P* space, where P is
“compact”.

We first prove the following theorem.

1.1. Theorem. Let a topological property P have (C). If
{X,} are P* spaces on the same basic set, then AX, is also a P*
space.

Proof. Put Z=AX,, then Z is a quotient space (cf. [5]) of
' X,, where >} X, denotes the sum of X,* Since {X,} are P*
spaces, it is clear that >3 X, is a P* space, so by the next lemma,
the theorem is proved.

1.2. Lemma. Let P be a topological property satisfying (C).
If X is a P* space then any quotient space of X 1is also a P*
space.

Proof. The lemma can be proved easily.

1) Let P be a property of topological spaces. P is said to be topological if
it is invariant under homeomorphisms.

2) X is arcwise connected if for two points a,b in X there is a continuous
image of closed interval containing @,b in X.

3) The fact is due to Professor K. Morita. In 3 X, {X«} are mutually dis-
joint and any X, is open in X Xa.
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Let P be a topological property. A topological space X is
called a w-locally P space (or a locally P space) if for any point
x in X, there is a neighborhood (or an arbitrarily small neighbor-
hood) having P. It is clear that a locally P space is always a
w-locally P space, but the converse is false in general (for example,
if P is “connected”).

1.3. Theorem. Any P* space is a meet of w-locally P
spaces.

Proof., Let X be a P* space and let & be the family of sub-
sets in X satisfying P. For any Ke &, we define a topological
space X as follows: O(Xg)={(KNU)UM; UeO(X) and M is any
subset which is disjoint from K}. Since K has P in X, and any
space consisting of one point satisfies P, X is a w-locally P space.
In order to prove that X=AX., we need only to show that
A X=X, because it is clear that AX =X, If We O(AXy), then
WeO(Xg) for any K, so W is of form (KN Ug)U Mg, where U,
is an open set in X and M NK=¢. WNK=KNUg, and it is
open in K, Since X is a P* space, W is open in X.

1.4. Corollary. Any P* space is a quotient space of a
w-locally P space.

Let P be a topological property, then P* can be also regarded as a
topological property, so we can define P** spaces as (P*)* spaces,

1.5. Theorem. If P has (C), P** spaces coincide with P*
spaces.

Proof. It is clear that a P space (=a space having P)is a P*
space for any topological property P, so any P* space is a P**
space. We need only to prove that any P** space is a P* space.
Let X be a P** space, then X is a quotient space of a w-locally
P* space by the above corollary. On the other hand, by next lemma,
any w-locally P* space is a P* space. Therefore X is a quotient
space of a P* space. By Lemma 1.2, X is a P* space.

1.6. Lemma. Any w-locally P* space is a P* space.

Proof. The lemma can be proved easily.

A topological property P is said to have the condition (N) if
for any family of subsets {4,} in a topological space such that any A4,
has P and NA.,>¢, JA, has P, The topological property “con-
nected” or “arcwise connected” has (N).

1.7. Theorem. If P has (N), P* spaces coincide with
w-locally P spaces.

Proof., It is clear that a w-locally P space is a P* space. To
prove the converse, let X be a P* space. Then, by (N), there is
the largest P space C, in X containing « for any xe X. In order
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to prove the theorem, it suffices to show that C, is open for any
xe X, For any K having P, (1) if C,NK+¢,C,UK is also a P
space by (N). Since C, is the largest P space, C,DK, so C,N K=
K is open in K, (2) if C,NK=¢,C,NK is, of course, open in K.
Since X is a P* space, C, is open.

Remark, In Theorem 1.7, that P has (N) is not a necessary
condition in order that P* spaces coincide with w-locally P spaces:
If P has (C) and if @=P*, then Q* spaces coincide with w-locally
R spaces (they are also equal to @ spaces, cf., Theorem 1.5).

1.8. Theorem. Suppose that P has (C), then any meet of
locally P* spaces is also a locally P* space.

Proof. Let {X,} be locally P* spaces. Let X=AX, and let
O be an open subset in X, Since O is open in X,, the restriction
Y, of X, to O is a w-locally P* space, so it is a P* space. By
Theorem 1.1, Y=AY, is a P* space. Since it is clear that Y is
the restriction of X to O, X is a locally P* space.

2. Gleason [2] has proved the following theorem: let S be a
topological space. Then there exists a locally connected topological
space S* and a continuous one-to-one mapping ¢ of S* onto S such
that if f is any continuous mapping of a locally connected space A
into S, then f can be factored in the form f=¢of* where f* is a
continuous mapping of A into S*. Since if P is “connected”, locally
P* gspaces coincide with locally connected spaces, the following
theorem is an extension of the theorem of Gleason.?

2.1. Theorem. Let P have (C) and let S be a topological
space, Then there exists a locally P* space S* and a continuous
one-to-one mapping ¢ of S* onto S such that if f is any con-
tinuous mapping of a locally P* space A into S, then f=¢of*
where f* is a continuous mapping of A into S*.

Proof. Put S*=A{S,; S, is a locally P* space and S,=S}.
By Theorem 1.8, S* is also a locally P* space. Let f be any
continuous mapping of A into S, then we define a topological space
T as follows; O(T)={W; f~(W)e O(A)}. We see that T is a locally
P* gpace. For, let W be any open set in T, then f~(W)=U e O(4).
Since A is a locally P* space, U is a w-locally P* space, so U is a
P* space (Lemma 1.6). We can here regard that W is a quotient
space of U. By Lemma 1.2, W is also a P* space, so T is a
locally P* space, Now since f is continuous mapping of A into T
and T=S*, the theorem is proved.

4) The similar theorem was proved in [3] for locally arcwise connected spaces.
If P is ‘“‘arcwise connected”, locally P* spaces coincide with locally arcwise
connected spaces. In [2] Gleason discussed a generalization of his theorem, but
our method is a little different from his.
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3. Let P be a topological property. A topological space X is
called a P; space if a subset U(3,) in X is a neighborhood of
%, in X, whenever UNK is a neighborhood of %, in K for any
K(>u,) satisfying P. A neighborhood here need not be an open set,
It is clear that a P;* space is a P* space., If P is “compact”, P
spaces equal to k, spaces [7]. Let X; be a family of topological
spaces on the same set E. Then we define a space X on E as follows:
V(x) is a neighborhood of « in X if and only if V(x) is a neigh-
borhood of x in X; for any j. A neighborhood here need not be
an open set. The space X is not a topological space in general [6].
We will call X the w-meet of {X;}.”

3.1, Theorem. For any Pj space X, X is a w-meet of
w-locally P spaces.

Proof. The proof is almost similar to the one of Theorem 1.3.

Let X be a topological space and let C(X) be the set of all con-
tinuous functions on X, Wada [7] has proved the following fact,
which is useful for a kernel representation of compact linear oprators
on C(X) for a k, space X: If H (CcC(X), X is a k, space) is relative
compact in the topology of &-convergence, then H is equicontinuous,
where & is the family of all compact subsets in X (as to the kernel
representation, see R. E. Edwards: Functional analysis, theory, and
applications (1965) p. 662).

We obtain moreover the following.

3.2. Theorem. Let X be a Py space. If H in C(X) s
precompact in the topology of S-convergence, then H 1is equicon-
tinuous (and is pointwise bounded),® where & is the family of all
P-subsets in X,

Proof. Since X is a P, space, by Theorem 3.1, X is the w-
meet of w-locally P spaces {Xx}. Then we can regard that Hc C(Xy)
for any K and H is precompact in C(Xy) under the topology of
Z-convergence, where T={K and all points in Xy~K}, so H is
equicontinuous in X (ef. [1]), that is, for >0, there is a
neighborhood Ugk(x,) such that for any xe Ug(x,) and for any
ue H |u(x)—u(x,)|<e. W(x,)=U Ux(x,) is a neighborhood of X, so
for any « € W(x,) and for any we H |u(x)—u(x,)|<e. This shows
that H is equicontinuous in X.

In general, the converse of the theorem is false, that is, when
X is a P space an equicontinuous set in C(X) which is pointwise
bounded need not be precompact in the topology of &-convergence.
Suppose that P is “separable”, then we see that any metric space

5) We used the symbol Ax or A in [6] in the place of A or w-meet.
6) H is pointwise bounded if any x€ X H(x)={f(x); f€ H} is bounded.
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is a P space. If X is a metric space and &={all separable subsets
in X}, any H having the hypothesis in Theorem 3.2 is equicon-
tinuous, but we have the following:

Let X be a complete metric space and let &, be a family of
subsets in X. Let the topology of &,-convergence have the follow-
ing property; any equicontinuous and pointwise bounded set H in
C(X) is always S,-precompact. Then &S, is a family of relative
compact subsets in X,

For, since X is a complete metric space, we need only to prove
that any S in &, is totally bounded (=precompact). Let Sy e &,) be
not totally bounded, then S cannot be covered by a finite family of
o-spheres (for some 6>0). We put x,eS, arbitrarily, Then we

can find a point x,e S, such that nL_Jl Ss(x;) # z, for any n, where

Ss(x;) is the open o0-sphere such that él_lle center is x;, We put here

fi(x)=Max {0—d(x, x;), 0}, where d(x, y) is the distance function on

X. Then we can prove that H={f;|1=1, 2, 3, ---} is equicontinuous

and pointwise bounded, so H is &,-precompact by the hypothesis.

But we see that || f,—f. ||30=sg§> | fu(®)—Fn(x) |20 for m=m. This is
& 0

a contradiction.
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