160. On P* Spaces and Equicontinuity

By Junzo Wada

Waseda University, Tokyo

(Comm. by Kinjirô Kunugi, M.J.A., Sept. 12, 1966)

Let P be a topological property.¹⁾ A topological space X is called a P^* space if a subset U of X is open in X whenever $U \cap K$ is open in K for any subset K in X satisfying P. The purpose of this note is to investigate properties of P^* spaces and as applications to obtain some extensions of a theorem of Gleason $\lceil 2 \rceil$ and the Ascoli's theorem.

1. Let E be a set, then we can consider the lattice of all topologies on E, that is, the ordering of the lattice can be defined as follows; $X \ge Y$ if $O(X) \supset O(Y)$, where O(X) (or O(Y)) is the set of all open subsets in X (or Y). For any family $\{X_j\}$ of topological spaces on E, $\bigvee X_j$ or $\bigwedge X_j$ denotes the join or the meet of $\{X_j\}$ ([4], [6]). A topological property P is said to have the *condition* (C) if it satisfies the following condition; any space consisting of one point has P, and any continuous image of X also satisfies P if a topological space X has P. Examples of topological properties having (C) are "compact", "separable", "connected", and "arcwise connected", and any k-space ([5]) is a P^* space, where P is "compact".

We first prove the following theorem.

1.1. Theorem. Let a topological property P have (C). If $\{X_{\alpha}\}$ are P^* spaces on the same basic set, then $\wedge X_{\alpha}$ is also a P^* space.

Proof. Put $Z = \bigwedge X_{\alpha}$, then Z is a quotient space (cf. [5]) of $\sum X_{\alpha}$, where $\sum X_{\alpha}$ denotes the sum of X_{α} . Since $\{X_{\alpha}\}$ are P^* spaces, it is clear that $\sum X_{\alpha}$ is a P^* space, so by the next lemma, the theorem is proved.

1.2. Lemma. Let P be a topological property satisfying (C). If X is a P^* space then any quotient space of X is also a P^* space.

Proof. The lemma can be proved easily.

¹⁾ Let P be a property of topological spaces. P is said to be topological if it is invariant under homeomorphisms.

²⁾ X is arcwise connected if for two points a, b in X there is a continuous image of closed interval containing a, b in X.

³⁾ The fact is due to Professor K. Morita. In $\sum X_{\alpha}$, $\{X_{\alpha}\}$ are mutually disjoint and any X_{α} is open in $\sum X_{\alpha}$.

Let P be a topological property. A topological space X is called a w-locally P space (or a locally P space) if for any point x in X, there is a neighborhood (or an arbitrarily small neighborhood) having P. It is clear that a locally P space is always a w-locally P space, but the converse is false in general (for example, if P is "connected").

1.3. Theorem. Any P^* space is a meet of w-locally P spaces.

Proof. Let X be a P^* space and let \Re be the family of subsets in X satisfying P. For any $K \in \Re$, we define a topological space X_K as follows: $O(X_K) = \{(K \cap U) \cup M; U \in O(X) \text{ and } M \text{ is any subset which is disjoint from } K\}$. Since K has P in X_K and any space consisting of one point satisfies P, X_K is a W-locally P space. In order to prove that $X = \bigwedge X_K$, we need only to show that $\bigwedge X_K \leq X$, because it is clear that $\bigwedge X_K \geq X$. If $W \in O(\bigwedge X_K)$, then $W \in O(X_K)$ for any K, so W is of form $(K \cap U_K) \cup M_K$, where U_K is an open set in X and $M_K \cap K = \phi$. $W \cap K = K \cap U_K$, and it is open in K. Since X is a P^* space, W is open in X.

1.4. Corollary. Any P^* space is a quotient space of a w-locally P space.

Let P be a topological property, then P^* can be also regarded as a topological property, so we can define P^{**} spaces as $(P^*)^*$ spaces.

1.5. Theorem. If P has (C), P^{**} spaces coincide with P^* spaces.

Proof. It is clear that a P space (=a space having P) is a P^* space for any topological property P, so any P^* space is a P^{**} space. We need only to prove that any P^{**} space is a P^* space. Let X be a P^{**} space, then X is a quotient space of a w-locally P^* space by the above corollary. On the other hand, by next lemma, any w-locally P^* space is a P^* space. Therefore X is a quotient space of a P^* space. By Lemma 1.2, X is a P^* space.

1.6. Lemma. Any w-locally P^* space is a P^* space.

Proof. The lemma can be proved easily.

A topological property P is said to have the *condition* (N) if for any family of subsets $\{A_{\alpha}\}$ in a topological space such that any A_{α} has P and $\bigcap A_{\alpha} \neq \phi$, $\bigcup A_{\alpha}$ has P. The topological property "connected" or "arcwise connected" has (N).

1.7. Theorem. If P has (N), P^* spaces coincide with w-locally P spaces.

Proof. It is clear that a w-locally P space is a P^* space. To prove the converse, let X be a P^* space. Then, by (N), there is the largest P space C_x in X containing x for any $x \in X$. In order

to prove the theorem, it suffices to show that C_x is open for any $x \in X$. For any K having P, (1) if $C_x \cap K \neq \phi$, $C_x \cup K$ is also a P space by (N). Since C_x is the largest P space, $C_x \supset K$, so $C_x \cap K = K$ is open in K, (2) if $C_x \cap K = \phi$, $C_x \cap K$ is, of course, open in K. Since X is a P^* space, C_x is open.

Remark. In Theorem 1.7, that P has (N) is not a necessary condition in order that P^* spaces coincide with w-locally P spaces: If P has (C) and if $Q=P^*$, then Q^* spaces coincide with w-locally Q spaces (they are also equal to Q spaces, cf., Theorem 1.5).

1.8. Theorem. Suppose that P has (C), then any meet of locally P^* spaces is also a locally P^* space.

Proof. Let $\{X_{\alpha}\}$ be locally P^* spaces. Let $X = \bigwedge X_{\alpha}$ and let O be an open subset in X. Since O is open in X_{α} , the restriction Y_{α} of X_{α} to O is a w-locally P^* space, so it is a P^* space. By Theorem 1.1, $Y = \bigwedge Y_{\alpha}$ is a P^* space. Since it is clear that Y is the restriction of X to O, X is a locally P^* space.

- 2. Gleason [2] has proved the following theorem: let S be a topological space. Then there exists a locally connected topological space S^* and a continuous one-to-one mapping φ of S^* onto S such that if f is any continuous mapping of a locally connected space A into S, then f can be factored in the form $f = \varphi \circ f^*$ where f^* is a continuous mapping of A into S^* . Since if P is "connected", locally P^* spaces coincide with locally connected spaces, the following theorem is an extension of the theorem of Gleason.⁴⁾
- 2.1. Theorem. Let P have (C) and let S be a topological space. Then there exists a locally P^* space S^* and a continuous one-to-one mapping φ of S^* onto S such that if f is any continuous mapping of a locally P^* space A into S, then $f = \varphi \circ f^*$ where f^* is a continuous mapping of A into S^* .

Proof. Put $S^* = \bigwedge \{S_\alpha; S_\alpha \text{ is a locally } P^* \text{ space and } S_\alpha \geqq S\}$. By Theorem 1.8, S^* is also a locally P^* space. Let f be any continuous mapping of A into S, then we define a topological space T as follows; $O(T) = \{W; f^{-1}(W) \in O(A)\}$. We see that T is a locally P^* space. For, let W be any open set in T, then $f^{-1}(W) = U \in O(A)$. Since A is a locally P^* space, U is a W-locally Y^* space, so Y is a Y^* space (Lemma 1.6). We can here regard that Y is a quotient space of Y. By Lemma 1.2, Y is also a Y^* space, so Y is a locally Y^* space. Now since Y is continuous mapping of Y into Y and $Y \cong Y^*$, the theorem is proved.

⁴⁾ The similar theorem was proved in [3] for locally arcwise connected spaces. If P is "arcwise connected", locally P^* spaces coincide with locally arcwise connected spaces. In [2] Gleason discussed a generalization of his theorem, but our method is a little different from his.

- 3. Let P be a topological property. A topological space X is called a P_0^* space if a subset $U(\ni x_0)$ in X is a neighborhood of x_0 in X, whenever $U \cap K$ is a neighborhood of x_0 in K for any $K(\ni x_0)$ satisfying P. A neighborhood here need not be an open set. It is clear that a P_0^* space is a P^* space. If P is "compact", P_0^* spaces equal to k_0 spaces [7]. Let X_j be a family of topological spaces on the same set E. Then we define a space X on E as follows: V(x) is a neighborhood of x in X if and only if V(x) is a neighborhood of x in X_j for any y. A neighborhood here need not be an open set. The space X is not a topological space in general [6]. We will call X the w-meet of $\{X_j\}_{>0}^{5}$
- 3.1. Theorem. For any P_0^* space X, X is a w-meet of w-locally P spaces.

Proof. The proof is almost similar to the one of Theorem 1.3. Let X be a topological space and let C(X) be the set of all continuous functions on X. Wada [7] has proved the following fact, which is useful for a kernel representation of compact linear oprators on C(X) for a k_0 space X: If H ($\subset C(X)$, X is a k_0 space) is relative compact in the topology of \otimes -convergence, then H is equicontinuous, where \otimes is the family of all compact subsets in X (as to the kernel representation, see R. E. Edwards: Functional analysis, theory, and applications (1965) p. 662).

We obtain moreover the following.

3.2. Theorem. Let X be a P_0^* space. If H in C(X) is precompact in the topology of \mathfrak{S} -convergence, then H is equicontinuous (and is pointwise bounded), where \mathfrak{S} is the family of all P-subsets in X.

Proof. Since X is a P_0^* space, by Theorem 3.1, X is the w-meet of w-locally P spaces $\{X_K\}$. Then we can regard that $H \subset C(X_K)$ for any K and H is precompact in $C(X_K)$ under the topology of \mathfrak{T} -convergence, where $\mathfrak{T} = \{K \text{ and all points in } X_K \sim K\}$, so H is equicontinuous in X_K (cf. [1]), that is, for $\varepsilon > 0$, there is a neighborhood $U_K(x_0)$ such that for any $x \in U_K(x_0)$ and for any $u \in H \mid u(x) - u(x_0) \mid < \varepsilon$. $W(x_0) = \bigcup U_K(x_0)$ is a neighborhood of X, so for any $x \in W(x_0)$ and for any $u \in H \mid u(x) - u(x_0) \mid < \varepsilon$. This shows that H is equicontinuous in X.

In general, the converse of the theorem is false, that is, when X is a P_0^* space an equicontinuous set in C(X) which is pointwise bounded need not be precompact in the topology of \mathfrak{S} -convergence. Suppose that P is "separable", then we see that any metric space

⁵⁾ We used the symbol \wedge_* or \wedge in [6] in the place of \wedge or w-meet.

⁶⁾ H is pointwise bounded if any $x \in X$ $H(x) = \{f(x); f \in H\}$ is bounded.

is a P_0^* space. If X is a metric space and $\mathfrak{S}=\{\text{all separable subsets in }X\}$, any H having the hypothesis in Theorem 3.2 is equicontinuous, but we have the following:

Let X be a complete metric space and let \mathfrak{S}_1 be a family of subsets in X. Let the topology of \mathfrak{S}_1 -convergence have the following property; any equicontinuous and pointwise bounded set H in C(X) is always \mathfrak{S}_1 -precompact. Then \mathfrak{S}_1 is a family of relative compact subsets in X.

For, since X is a complete metric space, we need only to prove that any S in \mathfrak{S}_1 is totally bounded (=precompact). Let $S_0(\in\mathfrak{S}_1)$ be not totally bounded, then S cannot be covered by a finite family of δ -spheres (for some $\delta>0$). We put $x_1\in S_0$ arbitrarily. Then we can find a point $x_n\in S_0$ such that $\bigcup_{i=1}^{n-1}S_\delta(x_i)\not\ni x_n$ for any n, where $S_\delta(x_i)$ is the open δ -sphere such that the center is x_i . We put here $f_i(x)=\operatorname{Max}\{\delta-d(x,x_i),0\}$, where d(x,y) is the distance function on X. Then we can prove that $H=\{f_i\mid i=1,2,3,\cdots\}$ is equicontinuous and pointwise bounded, so H is \mathfrak{S}_1 -precompact by the hypothesis. But we see that $||f_n-f_m||_{S_0}=\sup_{x\in S_0}|f_n(x)-f_m(x)|\geqq\delta$ for $n\neq m$. This is a contradiction.

References

- [1] N. Bourbaki: Topologie Generale. Chap. 10 (1961).
- [2] A. M. Gleason: Universal locally connected refinements. Illinois J. Math., 7, 521-531 (1963).
- [3] A. M. Gleason and R. S. Palais: On a class of transformation grougs. Amer. J. Math., 79, 631-648 (1957).
- [4] E. Hewitt: A problem of set-theoretic topology. Duke Math. J., 10, 309-333 (1943).
- [5] J. L. Kelley: General Topology. New York (1955).
- [6] J. Wada: Lattices of spaces, Osaka Math. J., 5, 1-12 (1953).
- [7] —: Weakly compact linear operators on function spaces. Osaka Math. J., 13, 169-183 (1961).