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186. On the Representations of SL(3,C). I

By Masao TSUCHIKAWA
(Comm. by Kinjiré KUNUGI, M.J.A., Nov. 13, 1967)

1. We shall determine the intertwinning operators and the
equivalence relation among the representations of the group
SL(3, C), generalizing the method described in [1] for SL(2, C).
We denote by G the group SL(3,C) and we adopt the notations
of the book [2] thoughout this paper, but elements of Z will be

denoted by
1 1
z=[z1 1 :', especially zlz[z1 1 }
2, % 1 1

and so on. Let W be the Weyl group of G consisted of s,=e,
$1, S5y S3=8,8;, 8,=8,8, and 8,=8,8,8, =8,8,8,, where

T

Let G° be the set of all g such that g,-g'#0, then g=kz for all
ge@G.

2. Let x be an integral character of D: y(9)=/(0,0,)""Vd§l»"2)
(L, m,>0), and &, be the finite dimensional vector space of poly-
nomials ¢ on Z which are at most of degree (I,—1,m,—1) with
respect to =z, z%,—#, and of degree (I,—1, m,—1) with respect to
%, 2. Then, according to the theorem of Cartan and Weyl, for
every finite dimensional irreducible representation of G there exists
x such that given representation E* is realized on &, by E}¢(z)
=B (k,)e(2,).

Now let y=(1, ¢) be a complex character of D: y(d)=/(0,05)""
0§12 (2, ttx are complex numbers and 1,—, are integers), then
we can construct a representation {T*, 9,} as follows. Let 9, be
the vector space of C=-functions ¢ on Z, satisfying the condition
that for every se W o,(2)=yxB""*(k,)e(z,) is also a C=-function.
The topology of 9, is defined by the compact uniform convergence
of every derivative for every ¢, (s € W). The operator T} on 9,
is defined by TZo(2)=xB"*(k,)¢(z,). This representation is identical
with the induced representation T*=Ind{y|K—G}. If all 2,, ¢, are
positive integers, the representation {E*, &,} is contained in {T*, 9,}
as a sub-representation.

3. Let B(¢, ) be a continuous bilinear form on 9,x9, such
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that B(T}¢, T¥¥)=B(¢, ¥). We denote by C; the totallity of C=-
functions on G with compact support and define the continuous linear
mapping of C; onto &, as follows:

7 f)= | £ e B Ry

Then we can obtain a continuous bilinear form B, on C®x CZ such
that B,(f, h)=B(#@*(f), #¥(h)). We have

B.(f, )=\ £(0.0(0)dT(dgs,

where dT is a distribution on G which satisfies

@) AT(krgks) = B"*(k,)y' B"*(k.)d T(g).

To obtain all invariant bilinear forms is equivalent to the problem
to obtain d7T satisfying the condition (G).

4, It is sufficient to consider dT on each KsK in order to
obtain dT, since the condition (G) is given on the K-K double
cosets and G=>)KsK (s € W).

(i) KsyK=G"s, is a dense open submanifold of G;

(ii a) Ks;K and (ii b) Ks,K are seven-dimensional submanifolds
of G and their union is dense open in G— Ks,K. They are contained
in the boundary of Ks,K;

(iii a) Ks,K and (iii b) Ks,K are six-dimensional and their union
is dense open in the remaining part of G. They are contained in
the boundary of the union of the above manifolds;

(iv) Ks,K=K.

From the condition (G), we can get the explicit form of the
restriction dTy; of dT to Ks;K. Then in order to determine dT
completely, it is sufficient to determine the extension d7T% to G of
dTy and to restrict dT—dT; on Ks,K and to proceed analogously.
With this method we arrive at the following results.

5, Corresponding to the cases enumerated in 4, we obtain the
invariant bilinear forms B(g, v*) in the following form.

(i) When and only when y%y/(0)=1 (%*(6)=y(sds™")) and neither
of pairs (4, 1) (k=1,2) is a pair of positive integers, B(¢, ¥) exists
and has the form

g(zlzz_ za)(—zl—l,—pl—-l) zé——]x—l,-—pg—-l) go(z z’)nk(z’)dz dz’;

(ii a) When and only when yy'(6)=(0%0,)+#, ¢,=2, or 0, j,=,
or 0, and (2, f,) is not a pair of positive integers,
S Z{TAm Rl mi =i gl =L —u 10 (9 /02,) 090 ¢ |(2,2,2 W (7') dz,d2,d 2 ;

(ii b) When and only when y*y'(6)=(0%0,)"»%, i,=2, or 0, j,= tt,
or 0, and (4, £,) is not a pair of positive integers,
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§z§—11~%2—1,-—#1—i2—1) zé—-h—lzﬂz—-l,—/q—#ﬁi2~1)

X [(0/02,+ 2,0/02,) 232 |(2,2,2" )¥r(2)d 2,d2,d7;

(iii a) When and only when y"1y’(9)=(0,03)"*»72(0,0%)"*»#®, 1,=2, or
0,j,=p, or 0 and if ¢,=2,, 4,=4, or 0, if 4,=0,4,=2,+2, or 0 and
if jy=p, Js=p, or 0, if 7,=0,7,=p,+ ¢ or 0, and (1, p) is not a
pair of positive integers,

Sz;—zz—il—u—#z—ﬁ—n [(0/02,)1*99(0/02,+ 2,0/025) "> ¢ ] (2,2 )W (2')d2,d2";

(iii b) When and only when y2y'(0)=(0,0%)"19(030;) ", 4, =2,
or 0, jy,=p, or 0 and if ¢,=2,%=2 or 0, if ¢,=0,%,=2,+2, or 0
and if ji=p,Js=p or 0, if 5,=0,5,=p+, or 0, and (%, p) is
not a pair of positive integers,

Sz;““‘il“"/‘ﬂl‘“ [(0/02,)"70(8/0z, +2,0/025) 579 (2,2 )Yr(2")d 2,d2 .

(iv) For yxy'(6)=(0%0;) v (9,03)"»7?, if we set 4=min (¢, 3,),

j:min (ju jz)y
aMS [(9/02,) 1= 71170(3/02,) "+~ *+33-0(3/02,) P 0 | (2)¥(2)d 2.

0<P<,0<9<s
As for a,, there are sixty-seven cases in total under the distinct
conditions. For instance, if 2,, ¢, are all positive integers and
we take ¢,=1,=A+2, Ji=J.=p+ s, then a,,=,C,;C, 2,(2,—1) -
X—p+1) popts—1) « -+ (pa—q+1).

6. An intertwinning operator A of 9, into 9),, is a continuous
operator such that T)A=ATY?. From each invariant bilinear form
we can obtain immediately the intertwinning operator by putting

B, «/r):S(Ago)(z)«k(z)dz for ped, and ¥ D, ,. From the results

in 5 we obtain the main theorem.

Theorem. Among the representations {T* 9,} there exist fol-
lowing types of intertwinning operators (k=1, 2):

1) identity operator;

2) Ag(@) =Gty 1| ol
where

YAy i) =

D+ 4| 2 — 20 | +2)/2) Qi 1~ Ak—rkls
(=2 — e+ 2= 4 1)/2) ’
A, maps D, into D,x; in this case (A, M) can be both positive
integers;

3) When 2, is a positive integer (u, any integer),

Aup(@)= (0957 ) o212 do;

A, maps D, into D,ok,u,;
4) When p, is a positive integer (1, any integer),
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Aup(@)= |0 @)p(en)dn;

A maps D, into D ;..

Every non-trivial intertwinning operator 1is expressed by a
product of operators of the above types. For imstance, for the
operator A obtained from the invariant bilinear form of (1) in 5,
we have A=A, AA, or AA A, in the notation in 2).
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