14. On Equivalences of Laws in Elementary Protothetics. II

By Kazuo Chikawa

(Comm. by Kinjirô Kunugi, M. J. A., Feb. 12, 1968)

In our previous paper [1], we have proved the equivalences of the two laws (i.e., the law of development and the law on the limit of a function).

In this paper, we shall prove the equivalence of the theorems (a) and (a') which have been called the *generalized law on the limit* of a function. The rules of inference, substitution and replacement used in the systems of elementary protothetics has in detail given in J. Słupecki [2], and our paper [1].

- (a) $[f, q]{[p]{f(p)}} \equiv f(q) \cdot f(\sim(q))$,
- (a') $[f,r,s]{[p,q]}{f(p,q)} \equiv f(r,s)\cdot f(r,\sim(s))\cdot f(\sim(r),s)\cdot f(\sim(r),s)$.

To show the equivalence mentioned above, we shall first prove the following theorem.

Theorem 1. [f,r,s]{[f,q]{[p]{f(p)} $\supset f(q)\cdot f(\sim(q))$ }·[u,v]{f(u,v)} $\supset f(r,s)\cdot f(r,\sim(s))\cdot f(\sim(r),s)\cdot f(\sim(r),\sim(s))$ }.

Proof. (1)
$$\lceil f, q \rceil \{ \lceil p \rceil \{ f(p) \} \supset f(q) \cdot f(\sim(q)) \},$$

$$(2) \quad [u,v]{f(u,v)}\supset$$

by replacing the variables u, v in the assumption (2) with a variables r, s, we obtain the following expression:

$$(3) \quad f(r,s). \tag{2}$$

By a similar procedures, we obtain the following expression:

$$(4) \quad f(r, \sim(s)), \tag{2}$$

$$(5) \quad f(\sim(r), s), \tag{2}$$

$$(6) \quad f(\sim(r), \sim(s)),$$

$$f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s)).$$

$$(2)$$

To obtain the consequent we have used the following theorem of the propositional calculus:

$$[p, q, r, s]{p\supset (q\supset (r\supset (s\supset p\cdot q\cdot r\cdot s)))},$$

therefore we complete the proof of Theorem 1.

Theorem 2. $[f,q]{[f,r,s]}{[p,q]}{f(p,q)}\supset f(r,s)\cdot f(r,\sim(s))\cdot f(\sim(r),s)\cdot f(\sim(r),\sim(s))}\cdot [u]{f(u)}\supset f(q)\cdot f(\sim(q))$.

Proof. (1) $[f,r,s]{[p,q]}{f(p,q)}\supset f(r,s)\cdot f(r,\sim(s))\cdot f(\sim(r),s)\cdot f(\sim(r),\sim(s))},$

$$(2) \quad [u]{f(u)}\supset$$

By replacing the variable u in the assumption (2) with a variable q,

we obtain the following expression:

$$(3) \quad f(q), \tag{2}$$

$$(4) \quad f(\sim(q)), \tag{2}$$

$$f(q) \cdot f(\sim(q)), \tag{3;4}$$

in the last line of the proof we have applied the following theorem of the propositional calculus:

$$[p,q]{p\supset (q\supset p\cdot q)}$$

consequently we complete the proof of Theorem 2. Therefore we have obtained Theorem 3 by applying the following theorem of the propositional calculus to Theorem 1 and Theorem 2:

$$[p,q,r,s]\{((p\supset q)\cdot r\supset s)\supset(((r\supset s)\cdot p\supset q)\supset((p\supset q)\equiv (r\supset s)))\}.$$

Theorem 3.
$$[f,q]{[p]}{f(p)}\supset f(q)\cdot f(\sim(q))\}\equiv [f,r,s]{[p,q]}$$
 $\{f(p,q)\}\supset f(r,s)\cdot f(r,\sim(s))\cdot f(\sim(r),s)\cdot f(\sim(r),\sim(s))\}.$

Next we shall prove the following theorem:

Theorem 4. $[f, r, u, s]{[f, q]}{f(q)\cdot f(\sim(q)) \supset [p]}{f(p)}\cdot f(r, s)$ $f(r, \sim(s)) \supset \psi < f, u > (r)$.

Where, we introduce the following definition:

D1
$$[f, p, q] \{ \psi < f, p > (q) \equiv f(q, p) \}$$
.

Proof. (1)
$$[f,q]{f(q)\cdot f(\sim(q))\supset [p]{f(p)}},$$

- (2) f(r, s),
- $(3) f(r, \sim(s))$

$$(4) \quad \gamma \leqslant f, \, r \geqslant (s), \tag{D2; 2}$$

where, we introduce the following definition:

D2
$$[f, p, q] \{ \chi \leqslant f, p \geqslant (q) \equiv f(p, q) \}$$
.

$$(5) \quad \chi \leqslant f, \, r \geqslant (\sim(s)), \tag{D2; 3}$$

(6)
$$\chi < f, r > (u),$$
 (1; 4; 5)

$$(7) \quad f(r, u),$$

$$\psi \leq f, u \geq (r):$$

$$(D2, 6)$$

therefore we complete the proof of Theorem 4. Further, we shall prove the following theorem:

Theorem 5. $[f, r, s, u, v]{[f, q]{f(q) \cdot f(\sim(q)) \supset [p]{f(p)}}}$.

$$f(r,s)\cdot f(r,\sim(s))\cdot f(\sim(r),s)\cdot f(\sim(r),\sim(s))\supset f(v,u)$$
.

Proof. (1) $[f,q]{f(q)\cdot f(\sim(q))\supset [p]{f(p)}},$

- (2) f(r,s),
- (3) $f(r, \sim(s)),$
- $(4) f(\sim(r), s),$
- (5) $f(\sim(r), \sim(s))$
- (6) $\psi < f, u > (r),$ (Theorem 4; 1; 2; 3)
- (7) $\psi < f, u > (\sim(r)),$ (Theorem 4; 1; 4; 5)

(8)
$$\psi \leqslant f, u \geqslant (v),$$
 (1; 6; 7) $f(v, u),$ (D1; 8)

then we complete the proof of Theorem 5. Therefore we have obtained Theorem 6 by applying the following theorem of the

propositional calculus to Theorem 5:

$$[p, q, r]{(p \supset q) \cdot (p \supset r) \supset (p \supset q \cdot r)},$$

Theorem 6. $[f, r, s]{[f, q]{f(q) \cdot f(\sim(q)) \supset [p]{f(p)}} \cdot f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s)) \supset [u, v]{f(u, v)}}$.

Next, we shall prove the following theorem.

Theorem 7. $[f, q, u]\{[f, r, s]\{f(r, s)\cdot f(r, \sim(s))\cdot f(\sim(r), s)\cdot f(\sim(r), \sim(s))\supset [p, q]\{f(p, q)\}\}\cdot f(q)\cdot f(\sim(q))\supset f(u)\}.$

Proof. (1) $[f, r, s]{f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s))}$ $\supset [p, q]{f(p, q)},$

- (2) f(q),
- (3) $f(\sim(q))\supset$,

where, we introduce the next definitions:

D3
$$[p]{vr(p) \equiv (p \equiv p)},$$

D4
$$[f, p, q] \{ \omega \Leftarrow f \Rightarrow (p, q) \equiv (f(p) \equiv vr(q)) \}.$$

By applying the theorem

$$[f, p, q]{\omega \Leftarrow f \Rightarrow (p, q) \equiv f(p)},$$

in elementary protothetics to the expression (2), we obtain the following expression:

$$(4) \quad \omega \Leftarrow f \Rightarrow (q, v), \tag{D4; 2}$$

$$(5) \quad \omega \Leftarrow f \Rightarrow (q, \sim (v)), \tag{D4; 2}$$

$$(6) \quad \omega \Leftarrow f \Rightarrow (\sim(q), v), \tag{D4; 3}$$

$$(7) \quad \omega \Leftarrow f \Rightarrow (\sim(q), \sim(v)), \tag{D4; 3}$$

$$(8) \quad \omega \Leftarrow f \Rightarrow (s, t), \qquad (1; 4; 5; 6; 7)$$

(9)
$$\omega \Leftarrow f \Rightarrow (u, u),$$
 (8) $f(u).$ (D4; 9)

Therefore we complete the proof of Theorem 7. Then we easily obtain the following theorem from Theorem 7.

Theorem 8. $[f,q]\{[f,r,s]\{f(r,s)\cdot f(r,\sim(s))\cdot f(\sim(r),s)\cdot f(\sim(r),s)\}\}$ (s) $[p,q]\{f(p,q)\}\}\cdot f(q)\cdot f(\sim(q))$ $[u]\{f(u)\}\}$. Therefore we have the following Theorem 9 by applying the following theorem of the propositional calculus to Theorem 6 and Theorem 8.

Theorem 9. $[f,q]{f(q)\cdot f(\sim(q))}\supset [p]{f(p)}\equiv [f,r,s]{f(r,s)\cdot f(r,\sim(s))\cdot f(\sim(r),s)\cdot f(\sim(r),\sim(s))}\supset [u,v]{f(u,v)}$.

Then we have Theorem 10 from Theorem 3 and Theorem 7.

Theorem 10. $[f, q]{[p]}{f(p)} \equiv f(q) \cdot f(\sim(q)) \equiv [f, r, s]{[p, q]} {f(p, q)} \equiv f(r, s) \cdot f(r, \sim(s)) \cdot f(\sim(r), s) \cdot f(\sim(r), \sim(s)) }$.

Theorem 10 states that the generalized law on the limit of a function of one argument is equivalent to that of a function of two arguments. Therefore we complete the proof of the equivalence of the generalized law on the limit of a function in elementary protothetics.

References

- [1] K. Chikawa: On equivalences of laws in elementary protothetics. I. Proc. Japan Acad., 43, 743-747 (1967).
- [2] J. Słupecki: St. Leśniewski's protothetics. Studia Logica, 1, 44-112 (1953).