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46. Extended p-th Powers of Complexes and Applications
to Homotopy Theory
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Department of Mathematics, Kyoto University, Kyoto

(Comm. by Zyoiti SUETUNA, M. J. A., April 12, 1968)

1. Extended p-th power of a complex. Throughout this note p
will denote an odd prime, m=(p—1)/2, =2Z, a cyclic group of order
p, and the homology and cohomology groups will have the coefficient
group Z,. Let W=W=(=S8~) be a regular n-free acyclic CWW-complex
having one m-free basic cell e; for each dimension ¢. The cells ¢; are
oriented such that in the infinite dimensional lens space W/x the dual
w; ¢ H(W|r) of the class of e; satisfies w,,=(w,)?* and B(w,)=w, for
the cohomology Bockstein .

For a finite CW-complex X, the product and the reduced join of
p-copies of X will be denoted by X?=Xx ... xXand X®=XA .. -AX
respectively. Let m acts on X? and X® as cyclic permutations of the
factors, and consider the quotient complexes

Wrx. X? and ep"(X)=(W"x XP)/(W"|r),

where W indicates the r-skeleton of X and W"/z =W~ x a2 for the
base point z, of X. Let ), 2, @,, --- be a Z,-basis of homogeneous
elements of H,(X) which satisfies that if 4x,#0 for the homology
Bockstein then dx;=x, for some l. A Z,-basis of H, (W x,X?) is given
as the classes represented by the following cycles (ef. [2], [3]):

e;®,x%, 7=0,1,2,-.., 2?=2;®---Qu; (p-times),

€. (2,8 - -Qu,;,), Jj,+j. for somes,t,
where (4, - -+, j,) runs through each representatives of the classes
obtained by cyclic permutations of the indices. The same result holds
for H, (W7 x . X?) restricting e, by 0<{<r and by adding cycles of the
form o(e,,,®.(2,®- - - ®x,;,)).

By the natural projection Wrx Xr—ep'(X), a Z,-basis of
H,(ep"(X)) is obtained from that of H,(W"x,X?) by omitting the
cycles containing «,.

Denote by Pi:H,—H, ,,_, the dual of the Steenrod reduced
power P, and let Pix,=2a, D)z, for a; ;€ Z,. Then the following
relation has been established in [3].

Theorem 1. (Nishida).

Pi(ec+2n(p—1) Q& =2, <[C/72l]—+p(im> a’k,j(i)(ec+2ip(17—1) &,.x%)
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n — pi
where ¢ may be negative, g=deg &y, m=(p—1)/2, p®)=(—=1)™/m|,
e(8)=11f s is even, e(8)=0 if s is odd, x;=4dx, if 4x,%0, and the
second term is omitted if dx,=0.

As is easily seen, 4(e,®,x2)=¢(s)e,_; ®,x2.

For a base point preserving cellular map f:X-—Y, the product
1X f7: Wrx X?—Wrx Y? defines a cellular map

ep™(f): ep"(X)—ep”(Y).
Obviously, ep™(f)|ep*(X)=ep*(f), s£L7, ep"(/)=FN -+ NS (p-times),
ep"()=1, ep"(g)oep’(f)=ep™(9of), and if f=f’' (homotopic) then
ep"(f)=ep(f).

Denote by C;=Y U ,CX the mapping cone of f and represents
each point of CX by (2, t), xe X, teI=[0, 11, with (z, 1)=(x,, t)=1,,
and (x, 0)= f(x). Then the natural inclusion of ep”(Y) into ep"(C))
can be extended over a map (not cellular)

D;: Ceprisy=ep"(Y)U Cep”(X))—ep™(C))
by sending (w X (X, A - - - AZp), t) 1o WX (X1, DA - - A2y, £)). Assume
that the induced chain map f,:C (X)®Z,—C (Y)QRZ, is trivial,
hence so is ep”(f),. Then there is a canonical splitting H,.,(C))
=H/(X)+H,,(Y). Denote by #=2" ¢ H,,,(C,) the element corres-
ponding to x € H,(X), and similarly for C,,-;,. Then we have

Theorem 2. D, ((e;®.27)")=— p(q+1)(e;_,.,®.(&)?) (=0 if
1<p—1).

In order to prove this, consider the diagonal map d:WrxI
—WrxI?. Leaving fix d on W”x0l, we can deform d equivariantly
toa cellular map d’. Put D,(w X (@A -+ - AZp), D)= X (&, LI - - -
A (@p, tp) for d'(w, )=w’,t,, ---,t,). Then D,~D). Let di(e;®,.I)
=4-;_,1&® 1"+ ..., where each of the rest terms contains a face of
I». Then, by use of the assumption f,=0, we have D ((e;®,2?)")
=D ((e:®,27) )=+2-€;_, & (&)?. Here the sign + =(—1)w@-12
=(—1)m¢ is caused of the permutation (X xI)»—X? xI? and the coef-
ficient 1 is (—1)™m| by Lemma 5.3 of [4, VII] by considering the case
C;=S'. This proves Theorem 2.

2. Special cases. In the following, n will be sufficiently large
go that complexes and maps considered are in stable range. S=»
denotes an n-sphere, Mz*'=s"{J ,e"*' a Moore space of type (Z,, n),
and i:S"—M2** and 7:M72—S* the natural maps. We shall write
sometimes the stable homotopy class of a map f: X—Y by the same
symbol fe{X, Y}=1lim[S"X, S*Y]. For example, o=ir e {M}, Ms*},
and a generator a of {M7+*-* M2}~Z, is characterized by the rela-
tion Pie+*»-1=¢"*! in the mapping cone C, of a. G,={S"**, S"}is the
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t-stem group, and a,=rat € G,,_, is the first element of order p.

First consider the complex ep*(S*) which consists of a vertex x,
and cells e?”*9, 0<j<2r, with 9(e?***)=p.e??*%-1, Up to homotopy
type, ep*"(S™) is a mapping cone of a map Mi**¥~'—ep*-*(S*). Using
the results on the stable groups, we have

Lemma 1. ep*~%S») has the same homotopy type as the bouquet
of some mapping cones SPUCMI"***=% gqnd ME +*J CMEr+a+ir-2
1<i<p—2. In particular, S?* is a retract of ep?~*(S") and there
exists a map of M3"*?~! into ep?~(S*) inducing a monomorphism of
the homology.

Here the attaching maps of the above mapping cones are deter-
mined by Pj. By Theorem 1 we have P} (e?"*/***-%)=([j/2]+n(p—1)
/2)e?"+i, In particular the attaching map of the first mapping cone
is a multiple of 7ad and it is trivial if and only if =0 (mod p). Thus
we have

Lemma 2. There exists o map of ep*?~%S") into C,,=C,,,=S?"
U err+22-2 gwhich is identical on ep®(S*)=Sr», If n=0 (mod p) then we
can replace C,, by S** and there exists a map of ME™**7=2 into ep*»~%(S»)
inducing a monomorphism of the homology.

Next consider ep”(M3*"). For x ¢ H,,,(M3**), we have by Theorem
1 Pi(e,_,®.2?)= — pu(n+2)e,®,(4x)? and Pi(e,_,&®,x?)=0. Thus we
have

Lemma 3. There exists a map of C,=8""U_CM3"***=2 into
ep? Y (Mn*?) which is identical on SP"=ep°(S™)C ep’(M2*Y).

Consider «,: S**??-3—8» and the induced map ep”(S*+??-3)—ep”(S™)
for r<2p(p—1). In ep’(C,) we see by Theorem 1 that PZ(e,&,x?)
= — p(n+2)e(s + (e, , Q. (P4)), ®eH,,, (C,). By Theorem 2,
this gives a non-triviality of the functional Pr-operation for ep”(a,).
In particular, we have

Lemma 4. Let §: Mgr+22@-0-1_¢pr-1(§n+20-3) epr-1(Sn)>Srn phe
the composition of the map of Lemma 1 to ep?-*(S"**r-%), ep?~Ya,) and
the retraction of Lemma 1. Then B|Sen+#@-b-2—= g 43 q generator of
the p-component of Gypp-1y-a-

Finally consider ai: S***?-?*—M7%*! and ep**~*at) for the case n=2
(mod p). Let j: M2—ep*~%(S"*?*-%) be the map of Lemma 2, a=pn
+2(p+1(®—1). Denote by B, a generator of the p-component of
G2(sp+s—1)(p-—1)-2’ ISSSP_L

Lemma 5. For an element BM of my(M3), b=pn+2(sp+s—1)
X(p—1)—2, such that nf, ,fi=_,, we have ep**~ai),jyfs-1=1ypbs,
t:SPrCep’ *(S"), modulo the images of m,(M2"+?) and m,(M2E*+9),
2<s<p—1.

The proof is based on the methods in [8], [9], but the details are
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too long to describe here.

3. Relations in stable homotopy. As before a;€ G,,_; and
Bs € Gaprs-n(p-1-2 1<8<p—1, are elements of order p.

Theorem 3. If p.y=0 for y e G,, then a;y*=0 and {r?, a;, p¢}=0.

Proof. By the assumption there exists a map f: M7*'—S"-¢such
that f|S” represents y. Consider the composition of the map C,,
—ep? Y (M7*") of Lemma 3, the induced map ep?-'(f):ep? (Mp*)
—ep?-}(S»-t) and the retraction ep?r-(S»-*)—Sr2-r¢t of Lemma 1. Its
restriction on S»* represents y». The existence of such a map is
equivalent to y?ra=0 which indicates the last assertion, and a;y?
=7Pa,=y?mai=0.

Theorem 4. If a;y=0 for y e G,, then B,y?=0 and {r?, B, ¢}=0.

Proof. By the assumption, ep?-i(y)oep?-(a,) is homotopic to
zero. Let j:Mgn+a@--1epr-3(Sn+2r-%) pe the map of Lemma 1.
Since {Mgr+trw-n-1 }Mzn+2}=( for 1<i<p—1, Lemma 1 and Lemma 4
show that ep?-*(a,)oj is homotopic to B. Then applying the retraction
ep?-1(S»-t)—Srn-pt of Lemma 1 we have that y?o8 is homotopic to
zero, and the theorem follows.

Theorem 5. If {a,, p¢, 7}=0 for reG, and 2<s<p—1, then
Bsr’=0 mod a; G, c=pt+2(sp+s—2)(p—1)—1.

Proof. Remark that in Lemma 5 the generators of m,(M%"*?)
and m,(M2"**) are of the form &a,. By the assumption 7oai=~0 for
an extension 7:M2*'—S»-¢ of y. Let r:ep*?*(S"-)—C,=8m"7
U err-2t*2r-2 he the map of Lemma 2. Then 7,ep***(7),ep*® *(at) ] 4 fs-1
and 7,ep® - (m,(M2"+9)), 1=2, 8, vanish. Thus Lemma 5 shows 7,(r?8,)
=7,eP? (P iy fs=0, t.€., Br?=775,=0 mod a; - G..

For the case y=p, and s=2, we know that the p-component of G.
vanishes [7]. Thus

Corollary 1. B,p2=0, and the p-component of the (2(p*+2p)
X (p—1)—4)-stem group vanishes.

By Theorems 8 and 4, we have pr*+'=0, but this is not best
possible since gi=0 for p=38. If p>5 and 2<s<p—1, then {ay, p¢, p:}
=0. It follows from Theorems 5 and 3 that pi»+*=0. If p=3 we
have {a,, 8¢, B} = % 83, hence {a,, 3¢, B3} = & f,4i=0. Thus we have g;’=0.

Corollary 2. The elements p,, 1<s<p—1, are nilpotent.

Here we make some remarks. As in Lemma 4, for a map
p:S*»—S8» of degree p, the map ep?”~*(p) composed with maps of
Lemma 2 gives 7a. The composition of the map of Lemma 3 and
ep?-'(f) for the map B of Lemma 4 has a non-trivial functional P#*-
operation. This proves the main theorem of [7]. Further discussions
give a complex S»yenteyerttertt*iyertcyertett, a=p*2p(p—1)
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—2)+1, b=a+2p(p—1)—1, c=b+2p—-1=2p*p—1)—1, with P?*H~»
=pP'PrHr*e=H"**' and pf* as the attaching map of er*2.

4. Non-associativity in mod 3 generalized cohomology theory.
Let h* be a generalized (reduced cohomology theory equipped with a
commutative and associative multiplication g. For an integer ¢>1,
mod ¢ cohomology theory h*( ;Z, is defined by r«(X;Z,)=h**
X (X AM,),M, being a Moore space of type (Z,,1). If ¢=#2 (mod 4),
M,AM, is stably homotopy equivalent to SM,\/S*M,. Let v :8M,
—-M, M, and ¢: M;,AM,—SM, be the natural maps composed the
above equivalence. Then y,=d-*1Ay)*p gives an admissible mul-
tiplication in 2*( ; Z,) in the sense of [1].

We consider the case that ¢ is odd, then »~ T+ for the switching
permutation T of M,AM,. This implies the commutativity of u,.
Also, the associativity is deduced from (L Av) Sy~ ADAA TS,
By v=T¥ we have(y ADQAAT)S*=PQAA V(S T)(S*) = PAAV)SH,
for a cyclic permutation P of M®=M,AM,AM,. The stable group
{S*M,, MP} is generated by the element (1 Av)S* of order q and the
composition ‘a7 : S*M,—S*—S*—>M® of order (q,3). By the argu-
ments of [1] we have A A¥)S2) — PAAV)S*r=Fk-ia,;w for some ke Z
and this implies the relation x(yz)—(xy)z=Fk a¥*(0,2)(0,¥)(0,2) in
¥ 3 Z,1.

Similarly, Sep(1A@)—Sp(AA@)P=Fk -i'a,r’ for some k' e Z 5 and
Vo't MP—8S*—S*—S?M,, and this implies 2(yz)—(xy)z=Fk - a,(0,%)
X (0,9)(0,2) for the multiplication in the stable group m,(M,) given
by ¢. By use of ¢y=0, z=n'AAY)S, V'=Se(lA¢)i, we have
kE-va,r=—Se(A N)PAAV)S* =k -i’a;r, and this implies k=Fk’ (mod
(9, 3)). Obviously »*( ;Z,) and m,.(M,) are associative if ¢z0 (mod
3) or if g=k=0 (mod 3).

Now assume ¢=0 (mod 8), then k.iq, is an obstruction to extend
the map Sp(1A¢) over WX MPOMP since W'X M is obtained
from I XM identifying 0 X M with 1xM® by the permutation P.
It follows without difficulty that k=0 (mod 8) if and only if Pi(e,
®.2")#0 for a generator x of Hy(M,). By Theorem 1, Pi(e,®, 2%
=¢,®,(4dx)*. Thus k=0 (mod 3) if and only if 4x+0, i.e., ¢==0 (mod 9).
Consequently we have

Theorem 6. Let g be odd>1. If ¢#0 (mod 8) or ¢=0 (mod 9)
then h*(  ; Z,) and m(M,) are associative. If =0 (mod 3) and g0
(mod 9), then we have x(yz)—(xy)z= +a¥*(0,2)(0,Y)(0,2) tn h*( ; Z,)
and = +a,(0,2)(0,Y)(0,2) in w (M,.)

Note that 7,(M,) is not associative since a,5}8,#0.
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