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1. Extendedp-th power of a complex. Throughout this note p
will denote an odd prime, m=(p--1)/2, zr=Zp a cyclic group of order
p, and the homology and cohomology groups will have the coefficient
group Zp. Let W-W(=S) be a regular z-ree acyclic CW-complex
having one z-free basic cell e for each dimension i. The cells e are
oriented such that in the infinite dimensional lens space W/zc the dual
w e H(W/zc) of the class of e satisfies w=(w) and (wO=w or
the cohomology Bockstein .

For a finite CW-complex X, the product and the reduced join of
p-copies of X will be denoted by X;-X X and X(p) -X/k .../kX
respectively. Let zr acts on X, and X() as cyclic permutations of the
factors, and consider the quotient complexes

WX and ep(X)=(WX())/(W/),
where W indicates the r-skeleton of X and W/-W x) for the
base point x0 of X. Let x0, x, x., be a Z-basis of homogeneous
elements of H.(X) which satisfies that if /x:/:0 for the homology
Bockstein then z]x xt for some 1. A Z-basis of H.(W X) is given
as the classes represented by the following cycles (cf. [2], [3]):

e(R)x, ]=0,1,2,..., x-x(R)...(R)x(p-times),
e0(R)(x(R)...(R)x), ]]t for some s, t,

where (], ..., ’) runs through each representatives of the classes
obtained by cyclic permutations of the indices. The same result holds
or H.(W X) restricting e, by 0<i<r and by adding cycles of the
form 3(e,/(R)(x(R)...(R)x)).

By the natural projection Wr}(Xp--ep(X), a Z-basis of
t:l,(epr(X)) is obtained from that of H,(WX) by omitting the
cycles containing x0.

Denote by P,’Hq--Hq_i(p_) the dual of the Steenrod reduced
power P*, and let P.x-Xa.(i)x or a, e Z. Then the ollowing
relation has been established in [3].

Theorem 1. (Nishida).

[[c/2]+qml (R)x)P(e+.,(_)(R)x)-X,\ n--pi /a,(i)(e+,(_)
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[(c + 1)/2] + qm- 1) (i)(e/ (R)x)-/(q)(c + 1). n pi 1 a. /.(_)

where c may be negative, q=degx, m-(p-1)/2, /(t)-(-1)t/m!,
e(s)=l if s is even, e(s)=O if s is odd, x=Ax if Ax=/=O, and the
second term is omitted if Axe=0.

As is easily seen, A(e(R)x)--e(s)e_l(R)x.
For a base point preserving cellular map f’X-.Y, the product

1 f. W XW Y defines a cellular map
epr(f) ep(X)epr(Y).

Obviously, epr(f)]ep(X) ep’(f), sA_r, ep(f)=fA f (p-times),
epr(1)=l, epr(g)oep(f)=epr(gof), and if f f’ (homotopic) then
epr(f)ep(f’).

Denote by Cx--YUxCX the mapping cone of f and represents
each point of CX by (x, t), x e X, t e I-[0, 1], with (x, 1)=(x0, t)-y0,
and (x, 0)--f(x). Then the natural inclusion of ep(Y)into ep(Cf)
can be extended over a map (not cellular)

D" C,(f) ep(Y) U C(epr(X))-,ep(Cf)
by sending (w (xA.../ x), t) to w ((x, t)A.../ (x, t)). Assume
that the induced chain map f,’C,(X)(R)ZC,(Y)(R)Z is trivial,
hence so is epr(f)**. Then there is a canonical splitting Hq+(Cf)
--Hq(X)--Hq+I(Y). Denote by c=x Hq+(Cf) the element corres-
ponding to x e Hq(X), and similarly for Ce(f). Then we have

Theorem 2. Df,((e(R)x)^)---/(q+l)(e_+@(2)) (-0 if
i<p--1).

In order to prove this, consider the diagonal map d" WrXI
-W I. Leaving fix d on W 3I, we can deform d equivariantly
toa cellular map d’. Put D)(w (xA A x), t)-w’ ((x, t)A
A(x, t)) for d’(w, t)-(w’, t, ..., t). Then DD’. Let d’(e(R)I)
2.e_/(R)I + .., where each of the rest terms contains a face of

I,. Then, by use of the assumption f=0, we have Dz,((e(R)x,) ^)
=D).((ei(R)x)^)--+-2.e_,+(R)(2). Here the sign ___--(--1)qp(p-)/’

=(--1)q is caused of the permutation (XI)---,XI, and the coef-
ficient 2 is (-1)m[ by Lemma 5.3 of [4, VIII by considering the case
Cz-S. This proves Theorem 2.

2. Special cases. In the following, n will be sufficiently large
so that complexes and maps considered are in stable range. S
denotes an n-sphere, %"/ s e /-.- U a Moore space of type (Z, n),

-/ "MS the natural map.s. We shall writeand i’S---,, and 7r

sometimes the stable homotopy class of a map f" X--.Y by the same
symbol f e {X, Y}-lim [SX, SY]. For example, =izr {M, M/},
and a generator of M/-, M}..Z is characterized by the rela-
tion P.e/-=e+ in the mapping cone C, of . Gt={S/, S} is the
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t-stem group, and a-ai e G_ is the first element of order p.
First consider the complex ep:r(Sn) which consists of a vertex x0

and cells e/, O<_]<_2r, with 3(e’/)-p.e/-. Up to homotopy
type, ep(Sn) is a mapping cone of a map Mn+’r-z--ep’r-’(Sn). Using
the results on the stable groups, we have

Lemma 1. ep-(Sn) has the same homotopy type as the bouquet

of some mapping cones Spn j CM+- and M,+ [J CM,++.-l<ip-2. In particular, Sn is a retract of ep-(S) and there
exists a map of M,+- into ep-(Sn) inducing a monomorphism of
the homology.

Here the attaching maps of the above mapping cones are deter-
mined by P. By Theorem 1 we have P,(e"++-)=([j/2]+n(p--1)
/2)e"+. In particular the attaching map of the first mapping cone
is a multiple of ra6 and it is trivial if and only if n0 (mod p). Thus
we have

Lemma 2. There exists a map of ep-(S) into C.-C.-S
e/- which is identical on ep(S)=S. If n--O (rood p) then we

can replace C by S and there exists a map of M+- into ep-(S)
inducing a monomorphism of the homology.

Next consider ep(M/). For x e H+(M/), we have by Theorem
1 P.(e_(R)x)=--/(n/2)eo(R)(Ax) and P.(e_(R)x)--O. Thus we
have

Lemma :. There exists a map of C.--S.CM+- into
-1 n+lep (M which is identical on Sn-ep(S)cep(M/).
Consider a" S/-S and the induced map ep(S/-)-ep(Sn)

for r2p(p-1). In ep(C.) we see by Theorem I that P(e(R)x)
--/(n/ 2)e(s + 1)(e,_ (R)(P.x)), x e H+_.(C.). By Theorem 2,

this gives a non-triviality of the functional P-operation for ep(a).
In particular, we have

Lemma 4. Let fl" M+:(-)--ep-(S+-)--.ep-(S)--S be
the composition of the map of Lemma I to ep-(S/-s), ep-(a) and
the retraction of Lemma 1. Then fil S+(-)-=fl is a generator of
the p-component of

n+2o-2 n+lFinally consider ai" S -M and ep-(ai) for the case n---2
(mod p). Let ]" M-ep-(S+-) be the map of Lemma 2, a-pn
+2(p+l)(p-1). Denote by fl a generator

Lemma 5. For an element fl_ of (M), b-pn+2(sp+s--1)
(p-I)-2, such that rfl_fl--_, we have
i’Sncep-’(S), modulo the images of lrb(Mn+) and (M+),
2_s_p-1.

The proof is based on the methods in [8], [9], but the details are
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too long to describe here.
3. Relations in stable homotopy. As before ct e G_ and
G.(+_>(__., l<s<p-1, are elements of order p.
Theorem 3. If p.r=O for e Gt, then ar;=O and {, a,p:}O.
Proof. By the assumption there exists a map f’M+Sn-t such

that fSn represents r. Consider the composition of the map C
-1epv-(M of Lemma 3, the induced map epv-(f) epv (M+)

ep-(S-t) and the retraction epv-(S-t)Sn-vt of Lemma 1. Its
restriction on S represents . The existence of such a map is
equivalent to r=a=O which indicates the last assertion, and

=a--ai=O.
Theorem 4. If a=O fOr e Gt, then fl=0 and {, fl, p}0.
Proof. By the assumption, epp-(r)oepv-(a) is homotopic to

zero. Let ]" M+;<-)-ep-(S+-) be the map of Lemma 1.
Since {M+(--, Mn+}=O for 1ii<p-1, Lemma 1 and Lemma 4
show that ep-(a)o] is homotopic to . Then applying the retraction
epP-(Sn-t)Spn-pt Of Lemma 1 we have that rVo is homotopic to
zero, and the theorem follows.

Theorem5. If {a,p:,[}0 for r eGt and 2sp-1, then

flrp0 moda G, c=pt+2(sp+s-2)(p-1)-l.
Proof. Remark that in Lemma 5 the generators of (M+)

and =(Mn+) are of the form a. By the assumption ?oaiO for
an extension ?’M+Sn-t of . Let r" ep-(Sn-t)C=SP-Pt

epn-pt+p- be the map of Lemma 2. Then r,ep-(?),ep-(ai),],_
and r.ep-((M+O), i=2, 3, vanish. Thus Lemma 5 shows
=r.ep-(?),i,fl=O, i.e., fl[=rfl0 mod a.G.

For the case =fl and s=2, we know that the p-component of G
vanishes [7]. Thus

Corollary 1. flfl=0, and the p-component of the (2(p+2p)

X (p--1)-4)-stem group vanishes.
By Theorems 3 and 4, we have fl’+=0, but this is not best

possible since fl=0 for p=3. If p5 and 2sKp-1, then {a, p,
0. It follows from Theorems 5 and 3 that +=0. If p=3 we
have {a, 3:, fl} fl[, hence {a, 3:, fl} flfl=0. Thus we have fl=0.

Corollary 2. The elements fl, 1 s p 1, are nilpotent.
Here we make some remarks. As in Lemma 4, for a map

p" SS of degree p, the map ep-(p) composed with maps of
Lemma 2 gives =a. The composition of the map of Lemma 3 and

ep-() for the map of Lemma 4 has a non-trivial functional P-
operation. This proves the main theorem of [7]. Further discussions
give a complex Suen+ue+uen++Ue+e++, a-p(2p(p -1)
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--2)+1, b-a+2p(p-1)-l, c-b+2p-l-2p(p--1)-l, with PHn

--P1PpHn+a-H+c+I and as the attaching map of en+a.
4. Non.associativity in rood : generalized cohomology theory.

Let h* be a generalized (reduced cohomology theory equipped with a
commutative and associative multiplication /. For an integer q> 1,
mod q cohomology theory h*(;Z) is defined by h(X; Z)-h/

(XAM),M being a Moore space of type (Z, 1). If q2 (rood 4),
MAM is stably homotopy equivalent to SM/SM. Let " SM-MAM and " MAMSM be the natural maps composed the
above equivalence. Then /-a-(1/)*/ gives an admissible mul-
tiplication in h*( ;Z) in the sense of [1].

We consider the case that q is odd, then 4zT for the switching
permutation T of MAM. This implies the commutativity of /.
Also, the associativity is deduced from (1A)S (A1)(1A T)S.
By T we have(/I)(1/T)S-P(1/4)(ST)(S4x)P(1/)S
for a cyclic permutation P of M(>-M/MAM. The stable group
{SM, M(>} is generated by the element (1 A+)S of order q and the
composition i0:7"SMSSM) of order (q, 3). By the argu-
ments of [1] we have (1A)S-P(1A)S-k.ia7 for some k e Z(,)
and this implies the relation x(yz)-(xy)z-k.o:**(x)(y)(z)in
h*(

Similarly, S(IA)-S(IA)P=k’.i’ar’ for some k’ e Z(q.) and
i’aIT"M(q)--S--S-SMq, and this implies x(yz)--(xy)z-M.(qX)
((qy)(qZ) Jor the multiplication in the stable group lr,(iq) given
by . By use of =0, ’(1/)S, i’-S(1/ )i, we have
k. i’a- -S(1A)P(IA)S k’.i’a, and this implies k=_k’ (rood
(q, 3)). Obviously h*( ;Zq) and lr,(iq) are associative if q0 (rood
3) or if q_-- k-- 0 (rood 3).

Now assume q=_0 (rood 3), then k.ia is an obstruction to extend
the map S(1/) over W M(q) M(q) since W M(q) is obtained
rom I Mq() identifying 0 Mq() with 1 Mq() by the permutation P.
It follows without difficulty that k0 (rood 3) if and only if P,(e
(R)x):/:0 for a generator x of H.(Mq). By Theorem 1, P,(e(R)x)
=e0(R)(Ax). Thus k0 (rood 3) if and only if Ax:/:O, i.e., qO (rood 9).
Consequently we have

Theorem 6. Let q be odd 1. If q O (rood 3) or q =_ O (rood 9)
then h*( Zq) and lr,(iq) are associative. If q=_O (rood 3) and qO
(mod 9), then we have x(yz)-(xy)z-+__$(qX)(qy)(qZ) in h*( Zq)
and +_ oQ(qX)(qy)(qZ) in ,(Mq.)

Note that ,(Ms) is not associative since



No. 4] Extenden p-th Powers of Complexes etc. 203

[1]

[2]

[3]

[4]
[5]

[6]
[7]

[8]
[9]

References

S. Araki and H. Toda" Multiplicative structures in mod q cohomology theo-
ries. I, II. Osaka J. Math., 2, 71-115 (1965), 3, 81-120 (1966).

E. Dyer and R. K. Lashof: Homology of iterated loop spaces. Amer. J.
Math., 84, 35-88 (1962).

G. Nishida" Cohomology operations in iterated loop spaces. Proc. Japan
Acad., -(3), 104-109 (1968).

N. E. Steenrod: Cohomology operations. Ann. Math. Study, 51 (1962).
H. Toda: Composition methods in homotopy groups of spheres. Ann. Math.
Study, 50 (1962).
: On iterated suspensions. I. J. Math. Kyoto Univ., 5, 87-142 (1965).

An important relation in homotopy groups of spheres. Proc. Japan
Acad., 43(9), 839-842 (1967).
: On iterated suspensions. III. J. Math. Kyoto Univ. (to appear).
N. Yamamoto: Algebra of stable homotopy of Moore space. J. Math Osa-
ka City Univ., 14, 45-67 (1963).


