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79. On Banach Function Spaces

By Riichir6 MUIAKAMI
(Comm. by Kinjir8 KUNUGI, M. J. A., May 13, 1968)

The theory of Riesz spaces (i.e. a normed vector lattice) plays an
important role in the theory of normed function spaces. The theory
have been developed by W. A. J. Luxemburg and A.C. Zaanen (see
[1], [2]).

First I explain some terminologies (see [2]). Let X be a non-
empty set and /2 a non-negative, countable additive measure on X.
We denote by (X, F.,/2) a a-finite measure space. Let M be the set
of all real valued, /-measurable functions on X, and M/ the set of
all non-negative functions of M. A function seminorm p is a map-
ping of M/ into the real numbers and has the seminorm properties
and p(u)<p(v) if u(x)<v(x) almost everywhere on X. We extend
the domain of p-to the whole M by defining p(f)= P(I f t). The normed
function space L is the set of f e M such that p(f) c. We assume
that there is at least one fe M such that 0 4p(f) c. We introduce
two function seminorms p, p. as follows

pl(f)-Suptl, fgld[2}, p.(f)- Sup tl, fg,d[2}.p(g) K1 pl (g) <I

A measurable subset B of X is called p-purely infinite, if p(z)--c
for every C(cB) o positive measure, p is called a saturated func-
tion seminorm if there is no p-purely infinite subsets. There is no
loss of generality even i we remove the maximal p, px-p.urely infinite
sets X., X’ from X (see Theorem 12.1 in [2]). Then p, p, p. become
the saturated function norms. We only use saturated function
norms. Under this assumption, there is a sequence (z);XX such
that 0/(X)c and 0p(zx,)c (see Theorem 8.7 in [2]). We
call such a sequence (7):XTX a p-exhaustive sequence. We intro-
duce the partial ordering in L, by the ollowing way" f<_g if and
only if f(x)<_g(x) almost everywhere on X. Then L, is a Riesz space
with respect to the above ordering. Futher every nonempty subset
of L, which is bounded from above has a least upper bound in L,,
and it can be obtained by picking out an appropriate increasing sub-
sequence. Such a Riesz space is called super Dedekind complete.

Let L,* be the Banach dual of L,, and Lc the subset of L,* having
the following property; F(e L,*) belongs to L*,. if and only if

(a.e) implies F(If])O.
We shall now define two subsets of L, as follows.
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L-(f e L f l.>/ ul> u.>/ 0 then p(un)-0}.
L is the norm closure of the ideal generated by

(1 "X. e (u)" p-exchaustive sequence}.
The latter definition has the meaning by the fact that p is a satu-
rated function norm. To prove a fundamental theorem, we need

Lemma 1. p(g)-supfIIfg,dl.feL, p(f)_<l}.
Proof. For c satisfying p(g) tr, we can take f0 e L such that

p(f0)_<l and Ilfogldl>a. For each n we put f-Min (fo, nxn)
(where X, e ()), then {f}cL and ]f,gl$1fogl. There is a number

such that / fgldl >_ a for any m>_n0 and p(f) <_ P(fo)-< 1. Hencen0

we have Sup{Ilfgldl’feL;, p(f)_<X} >o. Therefore p(g)<_Supl fgl

d/2" f e L, p(f)_<l}. The another inequality is trivial.
Corollary 1. The next statements are equivalent.
( i A l-measurable function f belongs to LI.
(ii) Ilfg]d[2<c for every g in L, and F(g)--Ifgd/ is a bound-

ed linear functional on L.
Proof. LL, implies (i)(ii). Next we shall prove (ii)-(i).

For any g in L;, we put g-Ig]/sgnf. By the hypothesis

Ifgd/=F(g)<_llFII p(g)< oo holds. Therefore by Lemma 1, we

have p(f oo, i.e. f e L
The next theorem was first proved by W. A. J. Luxemberg with

the hypothesis that L, is complete with respect to the function norm
p, but without this hypothesis we can prove it.

Theorem 1. In order that G e L*, belongs to L, it is necessary
and sulcient that G(f) tends to zero for every sequence f, e L,
satisfying f(x) 0 on X.

Proof of necessity. For G e L,, there is a g e L,1 such that

G(f)- If,gd/2. I f O, then G(f,)O.
Proof of sufficiency. There is a p-exhaustive sequence ():X,TX.

For any/-measurable set E X, we define a set function F(E) by F(E)
=G(;). It is a countably additive, /2-absolutly continuous set unc-
tion. Therefore by Radon-Nikodym Theorem, there is an integrable

function g(x) on X such that F(E)-G(z)= Igdl or any measur-

able set EXx. By the same argument for X., X, G(Z)=
holds for any measurable set E included in some X.. For any step
functions f(x) on some X e (), the same equality holds. For any
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non-negative, bounded functions f(x) whose support is contained in

some X, G(f)-- Ifgd/2 holds.

Even if f is not non-negative, the same argument can. be applied, and

G(f)- Ifgdl
holds for any f e L.
Next we show that g is a member of L. G(f) is bounded on L,
hence I fgldl holds for any fe L. Therefore by Corollary 1,

p(g) c, i.e. g L. Next we show that for any fe L,, G(f)- Ifgd/.
There exists Ifgd/ for any f e L,. For simplicity we suppose that

f >_ 0. For each n, we putf Min(f, nZx). Sincef e L we have G(f,)

If,gd, and by the dominated convergence Theorem we have

Ifgdf. Therefore G(f,)-Ifgd/. Since f f L and f f$O,

have G(f-f,)-O by the hypothesis. Therefore G(f)= Ifgdl.we

Corollary 2. L*.--L.
Proof. If G( e L*)belongs to Lp, then from Theorem 1 G(f)O

for any f e L such that f. 0 (a e.) Therefore we have G e L*p,,.
Next if G e L* belongs to L*,, then by the definition o L*., we have

G(f)O for any f e L satisfying f0 (a.e.). It follows from
Theorem 1 that G e Lp Therefore we have the desired results L*

Lpl
If p is a function norm, {f e L/G(f)=.0 for any G e L}-{0}

holds (see Theorem 15.2 in [2]). Therefore from Corollary 2 {f e L/
G(f)=O for any G e L}-{0} holds. Furthere p is a saturated func-
tion norm, the sequence {Zx, "Xn e (z)} is a countable basis of L. By
the above result, we have two Theorems obtained by W. A. J. Luxem-
berg and A.C. Zaanen (see Theorem 25, 10, and Corollary 24.3 in [2]).

Theorem A. The next conditions are equivalent.

(i) L is order dense in L (i.e. the ideal generated by L coin-
cides with L).

(ii) (L)*-L* (algebraically and isometrically)p,,

(iii) L-L for at least one p-exhaustive sequence (7).
Theorem B. L* L* if and only if L=Lp,(

Corollar]z :. L*-L if and only if L=L.
Proof. By Corollary 1 and Theorem B, Corollary 3 tollows.
Theorem 2. (i) Suppose that u T u (a.e.) and lim p(Un)<

implies p(u) co. L=L* * (algebraically) holds if and only if L=L
and L=L.
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( ii) Suppose u u (a.e.) implies p(Un) p(u). (i.e. Fatou prop-
erty) Then L=L** (algebraically and isometrically) holds if and
only if L=L[ and L,= L,.

Proof. (i) From the assumption, it follows that L=L (al-
gebraically) (see Theorem 7.7 in [2]).

Necessity. Suppose 0u0 in L--L**, then for any G in L*,
we have G(Un)=Un(G)--.O. By the difinition of L* it follows that.,
L* L*. and L,= L[ by Corollay 3. By the same way if 0< Un 0 in

L*, then for any f in L**.=L, it follows f(Un)=U(f)--O. We have

L-(L)* and L=5, and consequently (L*)* (L*.)* (L,*)* (L)*.
Therefore we have L=(L,)* and L,-L,.

Sufficiency. If L=L[, then L,*=L holds from Corollary 3. By
the same way above we have L=L, rom L=L, therefore we have

L** (L)* =L... And L,=L, (algebraically) holds, the first assur-
tion was obtained.

(ii) p= p. holds if and only if p satisfies the hypothesis. There-
fore we have L**=L algebraically and isometrically. This com-
pletes the proof of (ii).

Lemma 2. If O<Un (a.e.) in L, and q(Un)--*O for every q in L*
(the sequence converges weakly to zero), then p(Un) 0 (the sequence
converges strongly to zero).

Proo. By the difinition of L* we have L*,=L*,. Then by
Theorem B, we have L-L and p(u) O.

Theorem 3. If L[ is order dense in L,, we have p-p2 on L.
Proof. Since L is order dense in L, we have L*,.:(L[)* by

Theorem A. If f0 (a.e.) in L[, it follows that q(fn)O for any
p in (L)*: L*,.. By Lemma 2, (fn} converges to zero with the norm
on L.

Let the sequence {g} be g,’g (a.e.) in L, O<g-gJ.O in L[.
Then p(g-- g) converges to zero, and p(g) <_ p(g,) / p(g- g), we have
p(g)p(g). Therefore p has the Fatou property, and we obtain

p--p, on L.
Corollary 4. If L[=L (or equivalently L is order dense in L),

P+= (u e L p(u)=p.(u)} is order dense.
Proof. By Theorem 3, P/ coincides with L.
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