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1. We suppose throughout this paper that (m,) tends to zero
monotonically.

J. Meder [1] (cf. S. Kaczmarz [2]) has proved the following

Theorem I. Denote by l,, L,, and L, the first logarithmic means
of the three series

(1) ian, ila,nmn, and f}l t, 4*m,
respectively, where t,=8,+8,+---+8, and s,=a,+a,+ - +a,. If
l,=0(/m,) as N—>co
and
Am,=0(m,/n log n) as H—co,
then L,=L,+0(1) as n—oo.

He raized the problem ([1] P 471) whether this theorem holds also
without any additional restriction or not and the problem ([1] P 472)
to generalize this theorem by proving it e.g. in the case of weighted
means or in the case of the Norlund method of summation.

Let 9,20, p,>0, and P,=p,+p,+--++p,—c0 as n—oo. The
weighted mean w, of the first series of (1) is defined by

wn:(p181+p282+ T +pnsn)/Pn'
Similarly we denote by W, and W, the weighted means of the second
and the third series of (1).

The case p,=1/n is the first logarithmic mean. About the

weighted means J. Meder and Z. Zdrojewski [3] proved the following

Theorem II. Suppose that p, >0, (p,) s convex or concave and

(2) 0<lim inf (n+1)p, /P, <lim sup (n+ 1)p, /P, < co.
If

(3) w,=o0(m3") as N—> 00

and

(4) Am,=0(m, |n) as N—00,

then W,=W,+o0(1) as n—oo.

This theorem does not contain Theorem I as a particular case,
since the first logarithmic means do not satisfy the condition (2).
We shall prove the following
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Theorem. Suppose that
(5) 0,10, D,/Pr:i=0Q) and P,—oco as n—co.
In order that W,=W,+o(1) for all (w,) satisfying the condition (8) it
18 necessary and sufficient that

(6) S Pamiidm,,,=O(P,)  as  m—oo.
k=1

Since the first logarithmic means satisfy the condition (5), this
theorem gives the solution for the problem P 471 and gives also the
solution of P 472 in the case of weighted means. The case p, | 0 in
Theorem II is a particular case of this Theorem. For the case p, |0
we can find a necessary and sufficient condition from the proof of this
Theorem, but it is not so simple as (6).

2. Proof of the Theorem. By the definition and Abel’s lemma,

PW,=> aymy 3, D=2, (Sx—8x-)My 2, D;
k=1 i=k k=1 =k

n-1 n n
= Z Sg (mlc Z Pj—Myq Z p]) + 8,M Dy
k=1 Jj=k Jj=k+1
n-1 n
=kZ':l(tk—tlc—1) (mlc jZ_:kpj‘kanpk) +({— b Dm,p,
n—2

Il

] tx (Azmk 2D+ AMy D+ A(mk+1pk)>

k J=k

+ tn—l(Amn~l * (pn—l + pn) + mnApn—l) + tnmnpn°

1l

Therefore
~ n-2
( 7 ) PanZPan'I' kgltk(ZAmk+1'pk+Aplc' mk+2)

=+ tn—l(Amn—l * (pn-l + pn) + mndpn—l_ Azmn—l : (pn—l + pn))
=P Wt Xot Yot Z,.
Now

n n n
inn:Z Qy Z pj:Z SkPx
k=1 Jj=k k=1

and then
Snzp;l(inn'—Pn—lwn—l)’

(8) t":k‘i S”:,él P (P W — Py Wi _y)
=P, w,p;*+ Z;Pkwkzl(p,;l).
Substituting (8) into (7), we get
X::Zf (Pkwkp;1+l;2: ijjd(pj_l)> (2P dMy 1+ My 2 dD)

[

2
= ,Z:lpkwkpz:l(zfokdmkn + My .0 4D5)

u[_\ﬂ3

-9 k-1
+k 2(2pkAmk+1+mk+ZApk)j§ Pyw,;A(p;")
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n—3
1281 Pow, i Cpedmy, o + My 34D1)

Il

n—-3 n—-2
+ /Z=1 ijjd(pj_l)k=zj:+l(2pk4mk+1 + M2 dD1)
n—-2
=% P, (ZAmk+1+ M s sD7 A,

n—2 n—2
+24(p;") 33 pdmy,,+ A" 3] mmdpj).
J=k+1 J=k+1
Since we have

n—2
My oD AP+ A(5") §+1mj+zdpj
JE

n—-2
=p;'dp, (mk+z—p;il 2 mmdp,-)

J=k+1

n—2

T (Amm+p;ilj_},;”pjdmm+pn_lmn))

n—2
=—dWe) 3 A1t P AP PaiMns

we get

n—2 n-—
(9) X,= 2 Powe (ZAmk+1+ A(piY) Z lpjdmj+1+ pidp, pn-lmn) .

- P
Similarly,
Yn = tn—-l((pn—l + pn)Amn + mndpn—l)
n-1

= (innm%kz_:l Pkwkd(ml)) ((pn_1 + D) dm,+ mnzlpn_l)

and

Zn = tn(pnmn - pndzmn)
n-1
= (PpMy— ppdim,) (innm‘+ kZ_I Pkwkd(p,:‘)) .
By the condition (3), the last term of X, is

(10) Puim, 3, Pwidpe=o(P, ' 4pi) =o(Py),
since p;' 1 and m;' 1, and

an Y.=o(Pumitdm, + 0P, T | 407 || =o(P,)
since p,_,/p,=0(Q), and further, -

(12) Z,=o (Pn+pnPn ::21 A(W)) =o(P,).

Collecting (7), (9), (10), (11), and (12), we get
~ n—2 n—2
A3 P, =PV, + 5 Puwoy (2dm,,+ A0 3 pidmy.,|

+o(P,).
Now

n—2 n—2
(14) 0= —-k};l Pkmild(pil)j_zk 1ijmj+1

n—2 j-1
=— jg:zmﬁmm kZI Pom;d(pih)
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MS

2 J-1
< % 0y Pomit 5 (4070

J

o B0

n-2
= Pj_lm;lldmmgjZ}ngm;IAmm.

i=
Therefore (13) becomes
PW,=P,W,+o0 (nz_szkm,;‘Amk“) +o(D).
k=1

This proves the sufficiency of the condition (6). The necessity of the
condition (6) is seen by (13) and (14). Thus the Theorem is proved.
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