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115. Boundary Behaviour of Functions Harmonic
in the Unit Ball

By Shinji YAMASHITA
Mathematical Institute, TShoku University

(Comm. by Kinjir.5 KUNUGI, M. . )., June 12, 1970)

1. The main purpose of this note is to prove Meier’s theorem
([5], Satz 5, cf. [2], p. 154) in a real-harmonic form in the open unit
ball U whose centre is the origin 0 in the Euclidean space R.

We begin with definitions of cluster sets following the planar cases
(cf. [2], [6]). The two-point compactification R U (-- oz, / c} of the
real number system R is denoted by R*. Let t9 be a domain in R, Q
be a point of the boundary 39 and be a subset of/2 whose closure
in R contains Q. Let f(P) be a real-valued function in t9. Then, the
cluster set of f at Q along is defined by

Cg(f Q) (- f(
0

where is the open ball {P;PQr} and the closure is taken in R*.
By a cone --zl(Q, , h) (in 12) at Q we mean an open circular cone in
/2 with vertex Q, axis along a straight line through Q, generating
angle (- one hal o the opening angle) ?, 04 p / 2, and altitude h.
A segment X (in 2) at Q is an open rectilinear segment X in/2 termi-
nating at Q. The cluster sets corresponding to --/2, A and X will be
denoted by C(f, Q), C(f, Q) and Cx(f, Q) respectively; these sets are
non-empty and closed in R* and in the case where f is continuous, they
are, except possibly for C(f,Q), connected, i.e., of a form of
"interval" [a, hi, a, b e R*.

A point Q 312 is called a Plessner point of f if for any cone /at

Q, Cz(f,Q)-R*. A Fatou point Qe 3[2 o f is a point at which

C(f, Q) consists of a single point of R*; here, z/ ranges over all

cones at Q. A point Q 0/2 is called a Meier point o f if Cx(f, Q)
X

--C(f, Q):pR*, where X ranges over all segments at Q. The totality
of Plessner (Fatou, Meier, resp.) points of f will be denoted by I(f, [2)
(E(f 2), M(f t2), resp.).

Our main theorem is stated in the case where/2 is the ball.

Theorem 1. Let f be harmonic in the ball U- {P OP4 1}. Then

U\{I(f, U) LJ M(f, U)}
is of first category in Baire’s sense on the unit sphere

Meier’s theorem is usually called "topological analogue of
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Plessner’s theorem". For the reader’s convenience we shall prove the
harmonic Plessner’s theorem in its full form (cf. [2], p. 147 for the
meromorphic form).

Theorem 2. Let f be harmonic in the ball U. Then
U\{I(f, U) [J F(f, U)}

is of Lebesgue measure zero on U.
2. Let f be harmonic in U. Let (Po),...,(Po),... be a

countable number of cones in U at Po=(1, 0, 0) such that any cone
(Po) at Po contains at least one (Po). Let (Q) be the cone at
Q e 3U obtained by rotation of (Po) around 0 (]-1,2, ...). Let
k, ..., k, be the totality of rational numbers. Then for any point
Q of the set E=3UI(f, U) we may find one (Q) and k such that
f((Q)) lies on the right-hand-side (simply, "on the right") or on the
left-hand-side ("on the left") of k. We denote by E,, (E,,t, resp.)
the set of points Q e E at which f((Q)) lies on the right (left, resp.)
of k, these sets are closed on 3U. We then obtain the following
decomposition of E.
( 1 E {E,, 0 E,,t}.

We first give a sketch of
Proof of Theorem 2. Set E*=EF(f, U) and decompose

( 2 E*
j,v

where E* -E*E a-r Since F(f, U) is measurable as in the

3,a

ollows rom:
E+ --E, (E E*.... and E, E -E,, F(f U)

or ], ,- 1, 2, a-r, l.
We shall prove that all sets Ee are o measure zero Assume

otherwise. Then, we have one E+ for example, E+ of positive
measure. We can now apply Carleson-Hunt-Wheeden’s theorem (c.
[3], Theorems at p. 308 and p. 321) to f--k on U. Then, the points
o Ee,, are, except for a set o measure zero, Fatou points. This
contradicts Ee E*-EF(f U) Q E D.

We now discuss Theorem 1. Let G be a subdomain of the sphere
3Uandletg(Qo) bea conein U at QoeG. Let (Q) be the cone at

e G obtained by rotation of g(Qo) around O. We first consider in
the domain

Theorem . Le$ 2 be as defined above and le f be non-negative
and harmonic in 2. Then, GM(f 2) is of firs$ Baire category on G.

Lemma 1. Le$ 2 be as in Theorem 3 and le$ g be an arbitrary
real-valued function in 2. Then, GJ(g, 2) is of firs category on G,
where J(g, 2) is the se$ of points Q e 2 a which C(g, Q)=C(g, Q)
holds for any cone 2 a$ Q.
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Proof of Lemma 1. Let {Gn} be a sequence of subdomains of G
on U such that G,Gn/G or n-l,2, ..., and G- G. Then

we have" Gn\J(g, Y2) is of first category on G and hence on G. The
proof of this ollows the same line as in the proof of Theorem 6 by
Collingwood [1]. The lemma now follows rom

G\J(g, /2)-U {G\J(g,

Lemma 2 ([4], p. 262). Let u(P) be non-negative and harmonic
on the closed ball {P; OP<__a}. Then, putting p=OP, we have
( 3 a(a--p)(a+ p)-u(O)<=u(P)_a(a+ p)(a--p)-u(O).

Proof of Theorem :t. Let Qe G\M(f, 9). Then we have a
segment X at Q such that Cz(f, Q)#:C(f, Q). Since f is positive we
can choose a positive number e C(f, Q)\Cz(f, Q). As Cz(f, Q) is
connected, this must lie on the right or on the leit o . First we
consider the "right" case with an additional condition
( 4 Cz(f, Q)F/R :/:I (non-empty).
Let /9--(1/4) dis {a, Cz(f, Q)F1R} (0), where "dis" means the usual
distance in R. By compactness o Cz(f, Q) we may find a subsegment

X of X terminating at Q such that j(.2t) lies on the right of a + 2/9.
Furthermore, by the property of/2, we may assume that there exists
a cone I-I(Q, {f, h) at Q lying in/2 and whose axis contains X and
h (the length of X). Let/0 be a constant such that
( 5 ) (+/)( + 2/)-< (1--/)(1 +/)-.
Let P e X and let (P,) be the closed ball with centre P and radius
a(P1)-(1/2)QP sin 9. Let *(P) be the open ball with centre P and

radius/a(P1). We then apply Lemma 2 (the left-hand-side of (3)) to
f on (P). Then or P e (*(P) 6(P) we have

( 6 f(P) > (1--/)(1 + [)-f(P)>a+ fl
by (5) and f(P)>=a +2/9. Now, as X P--.Q, the balls (*(P) cover

a cone at Q and hence by (6) we know that f(d) lies on the right of
a + ft. This means that a e C(f, Q) or

7 ) Cz(f, Q)=/= C(f, Q).

In the case where the set on the left-hand-side of (4) is empty, we
have (7) by Lemma 2, since f(P)+ oo as X e P-Q. In the "left"
case the proof is similar.

Combined with Lemma 1, (7) proves our Theorem 3. Q.E.D.
Remark. The above method of using Harnack’s inequality can

be used in the proof of the three-dimensional extension of Tsuji’s
theorem (Theorem IV. 20., p. 152 of [8]),

Proof of Theorem 1. We consider the decomposition (1) of the
set E=3U\I(f, U). If E is of first category, we have nothing to prove.
We assume that E is ot second category. Then at least one of E
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], -1,2, a--r, l, is of second category. Let A-E,,, for
example, be such one and let B be the boundary of the closure A of A
in 3U, so that fi.\B consists of countably many open components G, on
3U. Let G=G, be one of them. Then, A G is dense in G and hence
we obtain a domain/2-) z/(Q) such that f(9) lies on the right of k.
By Theorem 3 for h=f--k, we know that
( 8 G\M(h, tg)-G\M(f, )
is of first category on G and hence on 3U. On the other hand, by the
property of the domain /2, we have M(f, 9) G-M(f, U) G, and
hence by (8), the set G\M(f, U) is of first category on 3U. Since
A=B [2{ G,}, B being nowhere dense irt 3U, we have the theorem by

(1). Q.E.D.
Remark. The conformal map from U onto the half-space H-{P

=(x, y, z); z>0} (composed map of a translation and an inversion) and
the Kelvin transformution ([4], p. 232) allow us to assert the three
theorems posed above in H.
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