68. A Theorem on Riemannian Manifolds of Positive Curvature Operator

By Shun-ichi TACHIBANA

Department of Mathematics, Ochanomizu University

(Comm. by Kinjirô Kunugi, M. J. A., April 18, 1974)

Let M^n (n>2) be a compact orientable Riemannian manifold. If there exists a positive constant k such that

$$-R_{h\,ii}u^{hj}u^{il} \ge 2ku_{ij}u^{ij}$$

holds good for any skew symmetric tensor u_{ij} at any point, then M^n is called to be of positive curvature operator. M. Berger [1] has proved $b_2(M) = 0$ for the second Betti number of such manifolds, and then $b_i(M) = 0$ by D. Meyer [3] for $i = 1, \dots, n-1$.

The purpose of this note is to prove the following.

Theorem. If a compact orientable Riemannian manifold M^n (n>2) of positive curvature operator satisfies

$$(\sharp) \qquad \qquad \nabla^h R_{hjii} = 0,$$

then M^n is a space of constant curvature.

We remark that the condition (\sharp) is satisfied when M^n has one of the following properties:

- (i) the Ricci tensor is proportional to the metric tensor,
- (ii) the Ricci tensor is parallel,
- (iii) conformally flat, and the scalar curvature is constant.

Denoting the Ricci tensor by $R_{ji} = R_{hji}{}^h$ we define a scalar function K by

$$K \! = \! R_{lm} R^{ljih} R^m{}_{jih} + (1/2) R^{lmpq} R_{lmjh} R^{jh}{}_{pq} + 2 R^{ljmh} R_{lpmq} R^p{}_j{}^q{}_h.$$

Then we have

Lemma 1 ([2], [4]). In a compact orientable Riemannian manifold, the integral formula

$$\int_{M} \Big\{ \! K \! - \! | \mathcal{V}^{h} \! R_{hjil} |^{2} \! \Big\} d\sigma \! = \! - \frac{1}{2} \int_{M} | \mathcal{V}_{p} \! R_{hjil} |^{2} \; d\sigma$$

holds good, where $|A_{jih}|^2 = A_{hji}A^{hji}$, etc.

As it follows from (#) that

$$\int_{M} K d\sigma = -\frac{1}{2} \int_{M} |\nabla_{p} R_{hjii}|^{2} d\sigma \leq 0,$$

we shall calculate K under the condition (*).

Let P be any point of M^n and consider all quantities with respect to an orthonormal base field around P. For fixed k, j, i, h we define a local skew symmetric tensor field $u_{lm}^{(kjih)}$ by

$$u_{lm}^{(kfih)} = R_{lfih}\delta_{mk} + R_{klih}\delta_{mj} + R_{kflh}\delta_{mi} + R_{kfil}\delta_{mh} - R_{mfih}\delta_{lk} - R_{kmih}\delta_{lj} - R_{kfmh}\delta_{li} - R_{kfim}\delta_{lh}.$$

Then, after long but simple calculations we can get

Lemma 2.
$$\sum_{\substack{k,j,i,h\\l,m,p,q}} R_{lmpq} u_{lm}^{(kjih)} u_{pq}^{(kjih)} = -16K.$$

Lemma 3.
$$\sum_{\substack{k,j,i,h\\k,m}} u_{lm}^{(kjih)} u_{lm}^{(kjih)} = 8(n-1) |W_{kjih}|^2,$$

where W_{kfih} is the projective curvature tensor:

$$W_{kjih} = R_{kjih} + \frac{1}{n-1} (R_{ki}\delta_{jh} - R_{ji}\delta_{kh}).$$

Now, by virtue of Lemma 2,3 and (*) we have

$$K \ge (n-1)k |W_{k,iih}|^2 \ge 0.$$

Hence it follows that

$$0 \! \leq \! (n-1)k \int_{\mathit{M}} |W_{\mathit{kjih}}|^2 \, d\sigma \! \leq \! -\frac{1}{2} \int_{\mathit{M}} |\nabla_{\mathit{p}} R_{\mathit{kjih}}|^2 \, d\sigma \! \leq \! 0.$$

Consequently we have $W_{kfth}=0$ and hence M^n is of constant curvature.

References

- [1] M. Berger: Sur les variétés à opérateur de courbure positif. C. R. Acad. Sc. Paris, 253, 2832-2834 (1961).
- [2] —: Les variétés kähleriennes compactes d'Einstein de dimension quatre à courbure positif. Tensor, 13, 71-74 (1963).
- [3] D. Meyer: Sur les variétés riemanniennes à opérateur de courbure positif. C. R. Acad. Sc. Paris, 272, 482-485 (1971).
- [4] M. Tani: On a compact conformally flat space with positive Ricci curvature. Tôhoku Math. Journ., 19, 227-231 (1967).
- [5] S. Tachibana: On Killing tensors in Riemannian manifolds of positive curvature operator (to appear).
- [6] —: On Kählerian manifolds of σ -positive curvature operator (to appear in Nat. Sc. Rep. of Ochanomizu Univ.).