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117. Factorization of a Hyponormal Operator
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1. In this paper, only bounded linear operators on a fixed Hilbert
space H will be considered. An operator T is said to be hyponormal if
T*T—TT*=0.

This note is motivated by a recent work [1] of Yoshino, and we
prove the following theorem.

Theorem. Let A, B and S be operators such that

(i) BzAZ=0,

(i) ISI=1,

(iii) S*AS=B.

Then the operator T'=AY?S is a hyponormal operator.

Conversely, if T is a hyponormal operator, then there exist oper-
ators 4, B and S which satisfy (i), (ii) and (iii), and 7 can be written
in the form T'=AYS.

2. Proof of the Theorem. Suppose that there exist operators
A, B and S which satisfy (i), (ii) and (iii). Then

(A'28)*(AY2S) — (A2S)(A2S)*=S*AS — AV*SS*A?
(1) =B—AY"?SS*AV*>A — A*SS*A'?
=AY(I—-SS*)AY*=0.
Conversely, suppose that T is a hyponormal operator. Let
T*=U(TT*)"*
be a polar decomposition of T*. Let A=TT* and B=T*T. Then, since
T is hyponormal we have B=A>0. Also, we have
B=T*T=U{TT*V(TT*"*U*=UTT*U*=UAU*.
Let S=U*. Then ||S||£1, B=S*AS and T=(TT*)"*U*=AY*S. Hence
the proof is completed.

As a special case of the theorem, we have the following

Corollary ([11). Let T be a contraction and A the strong limit of
the sequence {T*"T"}. Then AT is a hyponormal operator.

Proof. The assertion is clear, because A=T*AT by the definition
of A.

The following lemma is a generalization of a result in [1].

Lemma. Inthetheorem, supposethat S is completely non-unitary.
Then T=AY?S is normal if and only if 4A=0.

Proof. ‘If part’ is trivial. Assume that T is normal. Then we
see from (1) that
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(2) B—AYV'SS*AYV*=A — A*SS*AV?=0,
Thus, A=B and S*AS=A. By (2), we have
AV(I—SS*)A*=0.
Since I—SS*>0, we see that {—SS*)A=0. Thus we have
A=SS*4, AS=SS*AS=AS
and so
(I—-S*S) A=A —S*SA=A4 —-S*AS=0.
The closed subspace [AH]'L reduces S and S is unitary on [AH]L.
Therefore A =0, for S is completely non-unitary.
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