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1. Introduction. Two ergodic theorems, the mean ergodic theorem
(M. E. T.) and a generalisation of Frchet-Kryloff-Bogoliouboff’s theorem
(F-K-B E.T.), were obtained in the preceding noteaD There are some
strong difference or gap between these two ergodic theorems. The
purpose of the present note is to fulfill this gap with new ergodic
theorems and to show that these theorems (including the M. E. T. and
the F-K-B E.T.) are intimately related to the properties of asymptotic
almost periodicity, to be defined below.

Let T denote a continuous (bounded) linear operation defined on a
Banach space B to B, and consider the sequence {T .}, z eB, n=
1, 2, Corresponding to the various assumptions of total boundedness
of {T .z}, we may obtain various ergodic theorems together with the
respective properties of asymptotic almost periodicity (in n)of T-z.
This simple idea was suggested by Bochner-Neumann’s theory (B-N
theory) of almost periodic functions in groups. However, since we do not
assume the existence of the inverse T- of T, we are here concerned
with the semi-group of the addition of positive integers. We also re-
mark that a new proof of the existence of the mean for Bohr’s
(Stepanoff’s, Muckenhaupt’s and other author’s) almost periodic func-
tions may be obtained by virtue of the ergodic theorems. Combined
with the Fourier analysis in the B-N theory, the M. E. T. yields a Fourier
expansion theorem and a theorem of existence of the proper values for
unitary (isometric) operator T of B. Lastly it is to be noted that the
B-N theory also suggests us not to confine ourselves to the Banach
spaces; the (ergodic) theorems obtained may be extended to linear
topological spaces.

2. Ergodic theorems and asymptotic almost periodicities.
Theorem 1. We assume that T satisfies the following total bounded-_.

(1) I[T a constant C (n 1, 2,...),

for given x e B, the sequence (x}, x-- T/Tz/... /T x
(2) | (n=l, 2, ...), contains a subsequence weakly convergen to a

point e B.
Then converges strongly $o and we have T.x=x If (2)/s
satisfied for all e B, then is defined by a continua linear opera-
tion T1 such that

1) Proc. 14 (1938), 286-294. Cf. also S Kakutani" ibd., 295-298.
2) Trana Amer. Math. Soc. 37 (1935), 21-50.
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(3) TT= T,T=T= T,

This is the M. E. T., expressed somewhat more precisely than in
the preceding note. T is the proection operator which maps B on
the proper space of T belonging to the proper value 1. Since we have
T"-=x0/ (T"--0), T"" is periodic in n (with the period zero)

except the error whose arithmetic mean 1 /-, (T".-x0) tends

strongly to zero uniformly in k when m tends to +. If, in parti-
cular, T is a unitary operator in the hilbert space, then we have a
more precise result concerning the almost periodicity in n of T"., i.e.
E. Hopf’s theorem.)

Theorem . We assume that T satisfies the condition (1) and

(4) { the(T 22 inttallYB, bounded in the strong topology defined

Then, since the convex closure of {T. x} is totally bounded, the M. E. T.
of course applies to T. (It is to be noted that, in this case, the proof
of the M. E. T. may be shortened ; it can be obtained without appeal-
ing to the Hahn-Banach’s extension theorem.)) Moreover, we have the
asymptotic almost periodicity (in n) of T.x

(5)
’for any > 0, there exists a positive integer p, such that any
interval of length p, with positive integers as its extremities con-
tains at least one integer p satisfying lin T+’x T’xll.

Proof of (5). There exists, by (4), a positive integer p, such that

rain. T’x-T’xll <-ffi<. k <-- C
for any m (= 1, 2, ...).

Hence, by (1), there exists k(m), 1 <= k(m)<= p,, such that

T+"x- T"+) x <:: e for n 1, 2,

Thus we have

min {lim T +" x- T"- x } _<_ for m p,+ 1,
m-,e < l <_ m-1

p+ 2, Q. E. D.)

1) E. Hopf" Ergodentheorie, Berlin (1937), 25.
2) For the sake of comprehension, we here sketch the proof for the (strong)

T+T+ + T,,
convergence of the sequence {xn}, x-- .x (n=l, 2 ). Since (xn} is

totally bounded, (xn} contains a subsequence (,,} such that lim ,,,-=oeB. Clearly we

have T-x0--z0, and hence we would obtain lim xn--zo if lim
T+ T+--.+ Tn-(x-x0)

=0. Since Tn is of norm C (n=l, 2, ...), this last equation is clear when (x-xo) is
of the form (y--T. y), y e B; and it is also clear when (x-xo) is a limit element of

the form (y-T.y), yeB. Thus from (x-x0)=lim (x--T+Ti"+T"-x)=lim
(E-T) (n’E+(n’--l) T+...+ T" )n" z,.E--the identity operator, we see that lira xn--xo.

3) The original proof is somewhat shortened by S. Kakutani’s remark.
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Empe. Let a continuous point transformation P defined on a
compactum R to R be a coco-

distance (P-, P-s) distance (, s) for any , s R .D
Let B denote the Banach space of all the complex-valued continuous
functions f() on R with the norm [IfI[--max. If()I, then P defines a

teR

linear operation T on B to B" T.f-, g()--f(P. ). It is easy to see
that the conditions (1) and (4) are satisfied for any B. Another
example is given from the theory of almost periodic functions. See
the next paragraph.

The set of all the continuous linear operations T on B to B con-

stitutes a Banach space B with the norm T (=l. u. b. T- II). Our
I’l_

next theorem reads as follows.
Theorem 3. We assume that T satisfies (1) and

(6) (T} is totally bounded in the topology defined by the norm in B.
Then the M.E.T. applies to T in the uniform sense"

(7) limll T/T2/’’’/T" -T =0.

Moreover, we have the asymptotic almost periodicity in the uniform
sense, viz. we have, in (5), lira T+-T instead of lira T/’x

We omit the proof.
Theorem 4. We assume, beside (1)and (6), that any limit element

(e B) of the totally bounded set (T} is a completely continuous linear
operation on B to B. This case is precisely the case of the F-K-B E. T.

Proof. For the proof we have only to restate the F-K-B E.T."
Let T satisfy (1), and let there exist an integer m and a com-

pletely continuous linear operation V on B to B such that T- VII <: 1,
then the proper values with modulus I of T are finite in number. Let
these proper values be , ,., ..., , then there exist completely continu-
ous linear operations T,, T, ..., T and a continuous linear operation
S such that

T=,T/S, =T, TT=TT=T,i.l

(8) TT=0 (i -j), ST= T,S= 0 (i, = 1, 2, ..., k)

k

Since we obtain T=,T+S (n= 1, 2, ...) from (8), the asymp-

totic almost periodicity in n of T is apparent.
3. A proof of the ezistence of the mean for Bohr’s almost periodic

functions.

I) It is sufficient to assume that distance (/. t, P,*. s) distance (t, s) multiplied
by a constant independent of n.
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Theorem 5. Le$ a complex-valued continuous function f(t) on the
infinite interval (-0, oo) be almos periodic in Bohr’s sense, then

exists uniformly in s, oo s oo

Proof. According to S. Bochner and J. Favard, the sequence
{f(t)), f)(t)=f(t+n) (n=l, 2, ...), is totally bounded in the topology
defined by the distance IIf)-f)l[=l. u. b. lf)(t)-f)(t)!. Let B

-t<

denote the Banach space spanned by {f(} with the above norm II,
and let T be the continuous linear operation on B to B defined by
T.f=g, g(t)=f(t+l). T is surely of norm 1 and the Theorem 2 ap-

plies to T. Hence the: sequence {f}, f-T+T+"’+T .f (n-l,
n

2, ...), converges strongly to an element e B.D
Hence, we have, uniformly in s (-oo <2 s < oo),

lim Jf(s+t+m) dt=lim 1__
o n - . n - o

f(s+ t+ dt

cn+l

lim,. nl j
This proves the theorem, by the uniform boundedness of f(t).

4. Application of the Fourier analysis to the operator T. Through-
out this paragraph, we assume that the inverse T- of T exists.

Theorem 6. We assume that

(9) T a constant C (n O, :k 1, :k 2, ...),

for any eB, the set (T.x} (n=0, :kl, +/-2, ...) /s totally(10) bounded in the strong topology defined by the norm in B.
Then there exists at least one proper value with modulus 1 of T.

Proof. From (9)and (10)we see that the set {F(n)}, F(n)=T
(n= 0, 2= 1, =k 2, ...), is totally bounded by the distance F(n) F(m)
1. u. b. T/’x-T’+’xlI. Hence F(n) is almost periodic in the

group of addition of all the integera Thus, by the Weierstrass appro-
ximation theorem in the B-N theory, we obtain the Fourier expansion"

(11) T.x=F(n)..]C, (n=O, :kl, :1:2, ...),
-I

(i--1, 2, ...),
where the Fourier coelgeienN C are given by

(12) C lim --1 , ’F(m) lim 1 -T x.

By the M. E. T., T=lim 1__ ,T is the projection operator which

2) Cf. the footnote 2).
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maps B on the proper space of T belonging to the proper value .
Hence, if T does not admit proper value with modulus 1, then the
Fourier expansion (11) is nought for any B. By the uniqueness
theorem in the B-N theory, this means that T---0 for any B
and . Thus, in particular, T.-x=O for any E, which is surely
a contradiction.

Remark. If we put Ill x 11[ =l. u. b. T" x II, we have Ill T" x III
III x Ill. This new norm III x Ill gives an equivalent topology as x ][. Hence,
the condition (9) means, in essential, that T is a unitary (=isometric)
operator in B.

Corollary. As an application of the theorem we have the follow-
ing result. Let a one-to-one isometric point transformation P of a
compactum R on itself be the identical transformation, then there
exist a complex-valued continuous function f(t) on R and a complex
number =k= 1, I= 1, such that f(P. t)=f(t) for all t e R. In other
words, there exists at least one angle variable of the transformation P.

The proof of the Theorem 6 suggests the
Theorem 7. We assume (9), (10) and

(13) { T admits at most enumerably infinite number of proper
va/ues (1} with modulus 1, (i= 1, 2, ...),

then we have the Fourier expansion

, 2}’T (n 0, 2= 1, =t= 2, ...), T lim 15?,T(14) - o n-TT=TT=T, T=T, TT=O (i#j) (i,j=l,2,...).

If the expansion converges in weak or strong sense, then it represents
T (in weak or strong sense). Moreover we have the Parseval theorem
in the weak sense"

(15) lim 1
n-oo m-1 "-

for any e B and for any linear functional f on B.
Thus B is decomposed into the proper spaces T-B belonging to

the proper values 2 with modulus one of T.


