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Transformations.
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(Comm. by S. KAKEYA, M.LA., June 12, 1940.)

§1. Let C:u’(s) be a curve in a Riemannian space V, whose
fundamental quadratic form is

(1.1) d?=g,du"dw, (A, #,v,..=1,238,..,n).

Denoting the unit tangent, and unit normals of order 1,2, ...,n—1

and the ﬁrst second, ... (n—1)-st curvatures of C by E‘ E‘ E‘ and

;1¢, ;2¢,. o r%pmtlvely, the Frenet equations of C may be Wntten as

(1.2) fs B=—%En e, @=1,2..,m;x=%=0),
where 8/0s denotes covariant differentiation with respect to arc length
s along C.
A geodesic circle” is defined as a curve whose first curvature is
constant and whose second curvature is identically zero. For such a
geodesic circle, we have, from (1.2),

1.3) S pn g,
0s 1 2
O o _la

(1.4) BSE n&l: "

where x is a constant. Differentiating (1.3) covariantly and then sub-
stituting (1.4) in the obtained equation, we have

_‘f; A (Lyeea
P O
The ;?‘ denoting the unit tangent, we may put

g !
Js

(1.5)

’

so that we have, from (1.3),

Fu” 6"%"

o off

The equation (1.5) then becomes

Ful +g oou* Fw out _
3P I e o os

1) A. Fialkow: Conformal geodesics, Trans. Amer. Math. Soc. 45 (1939), 443-473.
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Conversely, if the equation (1.6) is satisfied, we have
7 v o v
) ( g, 2% u* % ) 9 ur u

o2 os "o o
s Fuf\  ou* ow’
=—-2 B —_—— . -— y
(g"asz as2>"”33 2 O

consequently, the first curvature » which appears in

L= @

os 1 2
is a constant. The first curvature » being a constant, the differentia-
tion of
i=1 9
% 0s

o

El
1
gives us

a7 SO WL VTS YR P
szf n(n)zf uE

We can, consequently, see that the second curvature % is identi-
cally zero. We can then conclude that the equations (1.6) are differential
equations of geodesic circles.

§2. We shall now consider a conformal transformation

2.1) Tw=Fw

of the fundamental tensor g,. A geodesic circle is not in general trans-
formed into a geodesic circle by this conformal transformation. The
arc length s and the Christoffel symbols {2} being transformed by

ds

2.2 —=p,
(2.2) g F
(2.3) (LY=L} + 0004008 — 0 Pugus ,
respectively, where
_Oologp
(2.4) Pu——a;”—,
we have
) 5 p o8’
5*ul 1 [ é%u? ou* 3u
2.6 ou =0 +pp— a] ’
26) o7 L ag sy g I
cut _ 1 Fut ou* du’ Sut ou’
2.7 = st Ay
@7 08 pL o Pus 0s 0s 0s s ds
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No. 6.] Concircular Geometry I. Concircular Transformations. 197

where
)
PP=0",  pu=Lr—p{L},
ou
and
o =9%p,;, .

These successive derivatives being calculated, we have, from (2.6),

- fut Sfw out 1 Su* Puw’ out ou* du’ ou*
2.8 , oY ==1g,%% 2 — 0,0,
(28) g, 62 o2 o5 ;L™ o2 o O Pubr s o5 os
oul SPur oul
+9%p,pp —~ =5

o5 P ae os J°

The equations (2.7) and (2.8) give us

Sut | - fut Fw out 1 [ B Pu” 2w dul
2.9 49, =_—| =" 4+ Y zw g%
(2.9) 0@ I a2 a2 s ples "I a2 s os
Yo ou* ouw’ out 3 3u":| ,
os 0s Os 08
where
(2'10) Py =Ppu; »— PLuPrt+ lgaﬁpapﬁgﬂu and Ply‘—“glppuu .

2

Then we can see that a curve whose conformal transform is a geodesic
circle may be defined as a solution of the differential equations

Sut ur Su’ oul Su” du’ out ou’
2.11 + ___+ — Av =O .
Q1) 9T e as TP e a5 o 3

We may call such a curve conformal geodesic circle. It may be noticed
that the so-called conformal geodesic is a conformal geodesic circle.

If a conformal transformation (2.1) transforms every geodesic
circle into a geodesic circle, then the function p must satisfy the partial
differential equations

(2.12) P =P ¥

It has been shown by A. Fialkow? that there exists actually a very
large class of V,’s which admit such transformations.

Since a conformal transformation with p satisfying (2.12) changes
a geodesic circle into a geodesic circle, we shall call it concircular trans-
formation and concircular geometry the geometry in which we concern
only with the concircular transformation (2.12) and with the spaces
admitting such transformations.

§3. Denoting by R, the curvature tensor of our Riemannian
space V,, we can show by a straight-forword culeculation that the cur-

1) See H.W. Brinkmann: Einstein spaces which are mapped conformally on
each other. Math. Ann. 94 (1925), 119-145.
2)- A. Fialkow, loc. cit. 212, p. 470.
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vature tensor R2,, is tranformed into R%,, by a conformal transforma-
tion (2.1) where

(3.1)

R}yo=Rho— Pl 0l — 9Pt uuf’s -
If the conformal transformation (2.1) is a concircular one, the
equation (8.1) becomes

(3.2) Ry =Rlvo—20(0,08— 1l .
Contracting, in this equation, with respect to the indices A and », we
obtain

8.3) R, =R, —2(n—1)¢g,,,

where

Rﬂu =1—éﬁwl ’ R,uv=R,/}lwl .
Contracting g = —:? 9", we can obtain ¢ from (3.3), say,
R="1[R-2nn—1)g],
P
R—R
3.4 2p=—FE-E

(3.4) ¢ nn—1)

where
R =§WRM ’

R=¢g"”R,, .
Substituting the value of ¢ into (3.2), we find

nyw mo ( ] ) (guy (0] g I’ﬂﬁl’ ) ’
or

= R - - R
3.5 Rll‘lﬂ— vaal}— ﬂ =Rlum—” TN v“al)— ﬁ ’
( ) u n('n—l) (gu g ) /4 nn—1) (gu 0 — Gl )
which shows that the tensor

(3.6)

R
Z 1wa=Rl 0 “udj_ ﬂ
2 1y 'n('n-—l) (gﬂvo g/MB )
is invariant under-a concircular transformation.
Contracting with respect to the indices 4 and », we have from
(3.6)

(3.7) Z,uy=wal=R,av—-ﬁ‘gnv ’

which is also invariant under a concircular transformation.
seen that the contracted tensor g**Z, vanishes identically.
§4. We shall, in this Paragraph, prove the following

It is easily
Theorem I. The necessary and sufficient condition that a Riemannian
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space V, may be reduced to a Euclidean space by a suitable concircular
transformation 1s that the concircularly invariant tensor Z%,, should
vanish identically.

Proof : Suppose that we can reduce the curvature tensor Eﬁw to
zero, then we have from (3.5)

(4~1) waa)=R/l.waJ—‘_'3” N (gﬂvaﬂl)_gﬂd}aﬁ)=0 .
n(n—1)

Conversely, if the concircularly invariant tensor Z4%,, vanishes identi-
cally, we have

i - R s
(4~2) R/lvw_ n(n-—l) (guvam gmﬁv) ’

then we can see that the scalar curvature R is a constant.
Substituting the equation (4.2) into (3.2), we find

5 R
Rlua)=|:—‘~’—_'2 ] vajy— “ﬁ .
To reduce R, to zero, we must have

_ R
2= nn—1)’

which is a constant, consequently, if we choose a concircular trans-
formation such that

4.3) Puv E

- 2n(n—1) Ga »

the curvature tensor R%,, may be reduced to zero. We shall now show
that the partial differential equations (4.3) are completely integrable.
The equations (4.3) may be written as

1 R
4-4 v = v_[‘_' oh al _———] Y .
(4.4) Pusv =Py | 5 0 Pala 5 0y |9

Differentiating these equations covariantly, we have

(4.5) Pu;v;m=P/z;wa+Pan;w_gaﬂf’a:wpﬁguy-
Substituting (4.4) into (4.5), we obtain

(48)  Pu m=[pypm—%{g“"paps- ai(hR—i)}g"‘"]””

I 1 R
+ ) —_{ 8 aPg— — » .
PuPo 2 9" PaPp ( 1) }g o |Pr

o3 1]
— g8 — =g _—
g l:papa) 2 9 "P:Ps 'n(n—l) [P f’ﬁg,uv’

from which we have
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4.7 _PaRva=Pﬂ;v;w_P#:w;v
R

W‘T) (9,405 — 9,0%)

= —fa

which is identically satisfied. Then the theorem is proved.

We shall call concircularly flat space a space whose concircular curva-
ture tensor Z2,, vanishes identically. A concircularly flat space being a
space of constant curvature, we have
Theorem II. A space of constant curvature is transformed into a
space of constant curvature by a concircular transformation.

If the concircular tensor Z,, vanishes identically, then the space is an
Einstein space, consequently we have

Theorem III. An Einstein space is tranformed into an Einstein space
by a concircular transformation.



