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Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAK(I, M.I.A., Oct. 12, 1940.)

The "algebraization" of the spectral theory, inaugurated by J. yon

Neumann, H. Freudenthal and S. Steen, was taken up recently by S.
Kakutani, F. Riesz, M.H. Stone and B. Vulich,D and was treated with
their respective m.ethods and results. The purpose of the present note
is to give a ring-lattice-theoretic treatment of the problem, stressing
the analogy to the field of real numbers. Without assuming metrical
(even topological) nor divisibility axiom, a characterisation of the .func-
tion ring of the Borel-measurable .functions) is obtained. Thus the re-
sults may be applied to the operator theory as well as to the theory
of probability.

1. Axioms of Pythagorean ring. A system of elements A,
B, ..., X, Y, Z is called a "Pythagorean ring" if it satisfies the follow-
ing axioms.

(A-l) 9 is a commutative, associative ring with unit I, admitting
the field of real numbers as coefficients (Operatoren).--The real num-
bers will be denoted by small greak letters.

(A-2) X=0 implies X= O.
(A-3) If non-zero element X of the form X--y2 is called "posi-

tive" (in symbol X:>0), then the sum of positive element and "non-
negative" element is positive, viz. X24 0 or Y 4= 0 implies the ex-
istence of Z24 0 such that X+ Y2=Z-.

(A-4) By the semi-order relation X Y(X-YO), there exists,
for all X, the lowest upper bound (1. u. b.) sup (X, 0) of X and 0.-
We will write sup(X, O)=X+, sup (-X, O)=X- and IXI=X+/X-.

(A-5) X+.X-=O for all X.
(A-6) Monotone increasing sequence {X} bounded from above

admits the 1. u. b. sup X.
(A-7) If A0, X0, X+X and supX exists, then

A. sup X=sup (A-X).

Remark 1. The "real" character of is expressed by the "Pytha-
gorean axiom" (A-3) together with (A-2). (A-4) and (A-6) are lattice-
theoretic axioms2 (A-5) is equivalent to XI X , and (A-7) means
a generalised distributive law.

1) J. von Neumann: Rec. Math., 43 (1936), 415-484. H. Freudenthal: Proc.
Akad. Amsterdam, 39 (1936) 641-651. S. Steen: Proc. London Math. Soc., 41 (1936),
361-392. S. Kakutani: Proc. 15 (1939), 121-123. F. Riesz: Ann. Math., 41 (1940),
174-206. M.H. Stone: Proc. Nat. Acad. Sci., 26 (1940), 280-283. B. Vulich C.R. URSS,
26 (1940), 850-859. The last two papers appeared during the preparation of the present
note. In the redaction, the writer is much suggested by Steen’s paper.

2) Not necessarily bounded
3) Concerning lattice see G. Birkhoff: Lattice Theory, New York (1940).
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X, there exist a, fl 0 with -aI X<__ I, then it is easy to see that
the axioms (A-5) and (A-7) are redundant. In this case we may re-
place (A-3) and (A-4) by the postulate of the existence of semi-order-
ing satisfying (2-1) below. For we are able to make use of the power
series expansion of "square root." Thus, in this bounded case, our re-
sults coincides with that of M.H. Stone. The details and applications
will be published elsewhere.

2. Some preliminary consequences from the axioms.
(2-1) I> 0. X> Z, Y>= W and a 0 imply X+ Y:> Z+ W and

axXaZ. If X>Z:>O, Y>= W>=O, then XYZWO. X>O
f x-o.

(2-2) By the semi-order relation X> Y, R is a lattice, viz. to
any pair X, Y there corresponds the 1. u. b. sup (X, Y)= (X- Y)// Y=
(Y-X)/ /X and the greatest lower bound (g. 1. b.) inf (X, Y) sup
(-x, Y).

Proof. By (2-1), the translations A--A/B and the expansions
A--)aA (a>O)induce one-one transformations of R which preserve
the semi-ordering the one-one transformation A -A of inverts
the semi-ordering.

(2-3) sup (X+Z, Y+Z) =sup (X, Y) +Z.
(2-4) sup (X, Y)+inf (X, Y)=X+ Y, in particular X=X+-X-.
Proof. Add X, Yto sup(X, Y)+inf(-X, -Y)=O and apply (2-3).
(2-5) The pair (X+, X-) is characterised by X=X+-X-, X+ .X-

=0, X+:>0 and X->=0.
Proof. Let X=X’-X", X’.X" O, X’ >= O, X" O, then (X/ X’)

=(X+-X’).(X--X")=-(X+.X"+X’.X-). Thus (X+-X’)z<: O,
and so X+ =X’ by (A-2).

(2-6) A-sup (X, Y)=sup (A-X, A- Y) (A-inf (X, Y)=inf (A-X,

A-Y)), if A0.
Proof. By (2-3), it is sufficient to prove the case Y=0, i.e. A-X+

(A. X)+. Now AX=AX+ -AX-, AX+ :> O, AX- O, AX+. AX-
=A. (X+. X-)=O, and hence A X+ =(A X)+ by (2-5).

(2-7) Any sequence {X} bounded from above (below)admits the
1. u. b. sup X. (g. I. b. inf X).

n_>l n>_l

Proof. Put X’=sup X and apply (A-6) to {X’}.
n:>m

(2-8) If sup X., sup Y (inf X., inf Y.) exist, then

sup (X.+ Y) sup X.+sup Y. (inf (X.+ Y,) inf X.+inf Y.).

Proof. Surely sup (X+ Y) =< sup X+sup Y. Let the equality
does not hold good, then sup X. sup (X+ Y=)-sup Y. Thus X
exists such that X. sup(X+ Y=)-sup Y., and so Y exists such
that X+Y sup (X.+ Y), which is a contradiction.

(2-9) If X _>_ 0, Y >= 0 and supX and sup Y (inf X, inf Y)
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exist, then (sup X.)- (sup Y.) sup (X.- Y) ((inf X.)- (inf Y.)=inf

(X-Y)).
Proof. By (A-7) and (2-6), we have X.sup sup Y=sup sup

(X- Y)=sup (X- Y,). Thus we have sup (X,- Y)=sup (X,-sup Y)=

(sup X,)-(sup Y)
(2-10) Let X>0, then inf (X/n)=O.

Proof. Let inf (X/n)= Y> O, then 0 < sup (n Y) =< X. By Y> 0

we have sup (nY) sup (nY) Y and hence mY sup (nY) Y for
an m. Thus (m+1)Y sup (nY), which is a contradiction.

(2-11) Let 0 <; 0 < Y, then X- < Y- implies X< Y.
Proof. (Y-X) (Y+X) >0 and hence (Y-X)-.(Y-X) (Y/X)

=-((Y-X)-).(Y+X) = 0 by (A-5). Thus ((Y-X)-).(Y+X)=O,
and hence by (A-3) and (2-1), we obtain ((Y-X)-).Y=O,
((Y-X)-)-X=0. Thus ((Y-X)-)z. (Y-X)--- ((Y-X)_)s-0 and
so (Y-X)-=0 by (A-2). Therefore we must have Y> X.

3. Spectral theorem for positive elements.
(3-1) Let X>0, then X= yz. By (A-5) we have (Y++ Y-)s=(Y+)S

_{_(y-)=(y+_ y-)s= Ys=X. We call (Y+/ Y-) the "positive square

root" X1/2 of X. Because of (2-11), X1/2 is characterised by X 0,
(X)’- X.

(3-2) Let X> 0 and put X-inf X’, Xz=X-X,. Then XZ X1,
X,-X= 0 and Xzz _<_ X_.

.Proof. By (2-9) X,z= inf X’+ = X,, X,. Xz X- X-XZ inf

X’+’-infX’+=0. From X’+i-Xz-X/X=X(X-I).(X’-/X"-s

q----/I)=0 we obtain infX’+’-XSinfX-X, i.e. XX-XZ=
X1-Xz X1-X. This proves X _<_ Xz by X. Xz- 2XX,-{-X X-X,.

(3-a) By (3-2) and (2-11) we have XI X1 = X}=(X)1/2=
1

_
X =--- = 0. Thus, by (2-7) and (2-9), infX =E exists and

E=E
(3-4) XE=X--XE E, X(I-E)=X--X (I-E) (I-E).

Proof. XE=X.. inf X inf (X.X’)-- inf ((X’-X) ) inf

((Z-’ XZ) " ) -0. Thus XE-XE-I-XE-X E. Next from X

X we obtain X X+ and hence X inf (XX1 )=X. inf

X" XE. On the other hand E I by I-E=I-2E-E (I-E)
0 and thus XXE. Therefore X=XE. We have already
X(I-E)=X-X=X.=X (I-E). To show that X(I-E) I-E, it
is sufficient to prove X. /. Now we have 0 (I-X_)=I-2X/
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X I- 2X2-I- X2"- I-" X2 by X <__ X,., i.e. X2 I.
(3-5) For any X> 0 and ,t 2> 0, put

E I-inf (inf (X/)’)-.

381

Then, by (3-4), E=E, E.X=E.(X/2)2 <:).E, X(I-Ea)=2(X/I).
(I-E) >= (-E).

(3-6) If >/>0, we have EE and E.E=E, i.e.
(E-E)=(E-E).

Proof. That E E is evident, and hence E= E-.E. We
have, by E , E-E E and thus E-E E.

(3-7) t 2 0, then z(E-E) X(E-E) (E-E).
Proof. X(E E) XE(E E) XE (I-E) E((I-E))

(E-E) by (3-6). The last inuality may proved in the same
manner.

(3-8) If we put infE=E+o and sup E=E, then XE+o=0 and
>0 >0

Proof. XE+o= 0 follows from 0 XE E. We have X/
(I-E) O. Thus, by (2-10), E=I.

(-9) E E-o=sup E.
Proof. We have (E-E_o)=X-E_o). Hence, by the defini-

tion of E and the idempotent character of (E-E.-o), (E-E-o)= (X/)’.
(E-E-o) if-E)- (E E_o) 0.

(3-10)--Spectral theorem. t X> O, O, 0 o <
<=p and -_,< , _, _, (i 1, 2, ..., k). Then, if we

put Eo=O, we have -d XE-_(E-E_,) < I, and thus we

may write X-N= herefore, by suN=I, we obtain the

ProoN XN-_(N-N_)= (X-_I) (-_), and

moreover, by (8-7), we obin (_-_) (N-N_) (X-_I)

4. Spectral theorem for geral elen. t X not nes-
rily sitive. By (3-10) we have the sctral reprntion of

N ((-()(x+* (E,(-(). Se (x+*.(x+
I)-=0 by (N-g), we have (X+I)--(N()-N())=0. Nenee (-)

N()=N_., we thus hae (N.,-N.) X(N.-ND .(N.-
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E sup E. sup E+(n),
n_l

we obtain E=E, E E( /> o), /(I-E} X(I-E) and
XE E. Therefore, as in (3-10), we have the spectral representation

x= E,, E,--N=E,_o, E_-g.. b. E,-0, E=.u.b.

It is easy to see that the setral system {N} is uniquely determined
by the above prorties.

5. Concrete representation of the idempotents as point sets. The
set of the "idempotents" E(E=E) of satisfies the following
three conditions.

(5-1) A, B e implies A
{5-2) 0, Ie, and A e
(5-3) If A, Be, are different, then either BA or A B.

Let B A, then there exists Ce such that B/ C-O, A/k C=O.
(Take, for example, C=B/ (I- A).)

is thus a "complemented, distributive lattice" by the "join"
k/ and the "meet" /, satisfying the "disjunction property" (5-3).
Hence, by G. Birkhoff-Stone-Wallman’s theory of Boolean ring, there

exists a totally disconnected, bicompact Trspace and a closed, open

base {A} of with the properties"

By a suitable correspondence A A e, is lattice-isomorphic

to {A}, i.e. (A /B)=A+B, (A/k B)=A. B.---Here - and denote
the set-theoretic sum and product.

For the proof of this fact see, for example, H. Wallman’s paper.>
Moreover, by (A-6), is countably additive and countably multi-

plicative as lattice. This fact implies the following property"

Let A <: A <: and k/A=A. Then surely A ] A. The
=1

closed set (A-] A) does not contain any open set, i.e. (A-_A} is
i--I

"non-den."
Proof. If otherwise, (A-, A) would contain a certain B with

B :k= 0. Then, by the isomorphism Co C, we must have B/k A=B
and B/ A=O (i= 1, 2, ...). This contradicts to A /A.

Therefore the closed and open base {A} of the topological space
is countably additive and countably multiplicative, if we neglect the

set of "first category," i.e. enumerable sum of non-dense sets. Hence,

{A} constitutes a "Borel field" except the set of first category. Let
a real-valued function f(t) on satisfies i) for any :>Z, the set

E( >f(t) >) coincides with a certain except the set of first cate-

1) Arm. Math., 39 (1938), 112-126.
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gory, and ii) the set E(]f(t)I= ) is of first category, then we may

call such function f(t) as "Borel-measurable."
6. Concrete representation of as function ring. By the spec-

tral theorem we have, for all xe 1]n
(i=O-l-1, 2=2, ...), lim _--o, lim2=o and consider the step func-

hmfJ (t)tions fJ ( ) on fJ ( ) a for t e (Ea-Ea_). Surely fx(t)= ’
is Borel-measurable. It is easy to see that, by the eorrespondenee
X--,fx(t), is ring-isomorphieally and lattiee-isomorphieally represented
upon {fx(t)}.Here sums, produets in {fx(t)} are ordinary functional
sums and produets, and fx(t) is ealled positive if the funetion fx(t) is
positive exeept the t-set of first eategory.

However, to assure that any Borel-measurable funetion f(t) is the
image of some Xe t, it is necessary and sufficient to assume the follow-
ing axiom.

(A-8) For any sequence {X} with inf (I X l, X I)=0 (i :k j), we
have

sup inf S7, X inf sup ,X e R.

Proof. We have only to approximate f(t)by finitely-valued Borel-
measurable step funetions and to put X=the limit (whieh surely ex-
ists by (A-8)) of the inverse images in of these step funetions.

Remark 1. The axiom (A-8) is redundant, if we assume the
"boundedness axiom" as stated in the Remark 2 after (A-7). For,
in this ease, we deal only with "bounded" Borel-measurable funetions.
Thus, in the "bounded ease," eonstitutes a eharaeterisation of the
funetion ring of "bounded" Borel-measurable functions. Such eharae-
terisation is also announeed by M.H. Stone, loe. eit. However, stone’s
method is different from ours.

Remark e. In (3-3) we may take E=inf (X, I)=inf (L X, X
Xs, ...). Thus, in (3-5), we may put

(3-5) Ea I- inf (I, X/2, (X/2), (X/2), ...).
The proof is easy. Aeeordingly, the axioms (A-2) and (A-3) may be
replaeed by (2-1). (3-5)’ together with (8-10) give a lattiee-theoretie
interpretation of Stone-Lengyel’s proof of the speetral theorem (Ann.
Math. 37 (1936), 853-864). To this point I hope to discuss in another
occasion.


