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Abstract

Let A(p) be the class consisting of functions f that are holomorphic in
D \ {p}, p ∈ (0, 1) possessing a simple pole at the point z = p with nonzero
residue and normalized by the condition f (0) = 0 = f ′(0) − 1. In this
article, we first prove a sufficient condition for univalency for functions in
A(p). Thereafter, we consider the class denoted by Σ(p) that consists of
functions f ∈ A(p) that are univalent in D. We obtain the exact value for
max

f∈Σ(p)
∆(r, z/ f ), where the Dirichlet integral ∆(r, z/ f ) is given by

∆(r, z/ f ) =
∫∫

|z|<r
| (z/ f (z))′ |2 dx dy, (z = x + iy), 0 < r ≤ 1.

We also obtain a sharp estimate for ∆(r, z/ f ) whenever f belongs to certain
subclasses of Σ(p). Furthermore, we obtain sharp estimates of the integral
means for the aforementioned classes of functions.

1 Introduction

We use the following notations throughout the discussion of this article. Let
D := {z ∈ C : |z| < 1} be the open unit disc where C is the whole complex plane.

Let Ĉ denote the set C ∪ {∞}. We now recall the following basic classes of func-
tions which are the main objects of study of many function theorists for several
years now. Let H be the family of analytic functions in D and A be the subfamily
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of H consisting of functions g that satisfy the normalization g(0) = 0 = g′(0)− 1.
We consider the class S := {g ∈ A : g is univalent in D}. Clearly S ( H. Let C
and S∗ be the subclasses of S which are convex ( f (D) is a convex set) and star-
like ( f (D) is a starlike set with respect to the origin) respectively. We also con-

sider the class Σ of meromorphic univalent functions in D∗ := {z ∈ Ĉ : |z| > 1}
having a simple pole at infinity with residue 1. We now discuss about the
motivation and background of the problems that we consider in this article. Let
g ∈ H. We denote the area of the image of the disk Dr := {z : |z| < r} under g
by ∆(r, g), where 0 < r ≤ 1 and

∆(r, g) :=
∫∫

Dr

|g′(z)|2 dx dy, (z = x + iy).

The above integral ∆(r, g) is popularly known as Dirichlet integral. Each function
g ∈ H has the Taylor expansion g(z) = ∑

∞
n=0 anzn in D and consequently, we

have g′(z) = ∑
∞
n=1 nanzn−1. It is now a simple exercise to compute

∆(r, g) = π
∞

∑
n=1

n|an|
2r2n. (1)

Moreover, if g ∈ S , we have a0 = 0, a1 = 1 and

Σ ∋ T(g)(z) = [g(1/z)]−1 = z − a2 +
∞

∑
n=1

cnz−n, z ∈ D
∗.

Now an application of Gronwall’s area theorem applied to the above function
T(g) will yield ∑

∞
n=1 n|cn|2 ≤ 1. For g ∈ S , we have the following expansion for

z/g:

z/g(z) = 1 − a2z +
∞

∑
n=1

cnzn+1, z ∈ D.

Now considering the above form of z/g, an application of the Gronwall’s area
inequality (∑∞

n=1 n|cn|2 ≤ 1) along with the fact that |a2| ≤ 2 , S. Yamashita (com-
pare [14, Theorem 1]) obtained:

Theorem A. For g ∈ S , we have

max
g∈S

∆(r, z/g) = 2πr2(r2 + 2), 0 < r ≤ 1.

For each r ∈ (0, 1], the maximum is attained only by the rotation of the Koebe function
Kθ(z) = z/(1 − eiθz)2, θ ∈ (0, 2π].

In the same article (compare [14, p. 438]), Yamashita conjectured that

max
g∈C

∆(r, z/g) = πr2, 0 < r ≤ 1,

where the maximum is attained only by the rotations of the function g(z) =
z/(1− eiθz), θ ∈ (0, 2π]. This conjecture has recently been settled by M. Obradovic
et.al. in [10]. In a recent article (see [13]), Ponnusamy and Abu Muhanna have
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obtained sharp estimates for the generalized Yamashita functional i.e.
∆(r, φ(z)/ f (z)) for the class of concave univalent functions with opening angle
πα, α ∈ (1, 2] at infinity, where φ is a Schwarz function.

In this article, we would like to consider meromorphic univalent functions
with pole at z = p ∈ (0, 1). Let A(p) be the class consisting of functions f that
are holomorphic in D \ {p}, possessing a simple pole at the point z = p with
nonzero residue and normalized by the condition f (0) = 0 = f ′(0) − 1. Let
Σ(p) := { f ∈ A(p) : f is one to one in D}. We organize the paper as follows.
In the next Section, i.e. in Section 2, before we present our main results, we first
establish a sufficient condition for univalence for functions in A(p) and we feel
that it will be useful to present the absolute estimates for the Dirichlet integrals
∆(r, f ) and ∆(r, f /z) for f ∈ Σ(p) and 0 < r < p. We also verify that these results
coincide with those of Yamashita in [14] for the analytic case as we take the limit
p → 1−.

Another interesting subclass of Σ(p) has recently been introduced by the
authors of the present article in [4]. This class is denoted by Up(λ) and consists of
all functions f ∈ A(p) such that

∣∣U f (z)
∣∣ < λµ, z ∈ D for some 0 < λ ≤ 1 where

U f (z) := (z/ f (z))2 f ′(z)− 1 and µ := ((1 − p)/(1 + p))2 .

It has been shown in [4] that Up(λ) ( Σ(p) and the interested reader may look at
this article for many other results on this newly defined class of functions. Now
if f ∈ Σ(p), then z/ f ∈ H and (z/ f )z=0 = 1. Therefore each function z/ f has the
following Taylor expansion:

z

f (z)
= 1 + b1z + b2z2 + · · · , z ∈ D. (2)

It is now natural to consider the following problems of maximizing the Yamashita
functionals:

max
f∈Σ(p)

∆(r, z/ f ) and max
f∈Up(λ)

∆(r, z/ f ).

We answer the above problems in Section 3. Thereafter, we consider another
problem that deals with finding the estimates of integral means for the class Σ(p)
and its subclass Up(λ). Now, consider g ∈ H and for such functions define the

integral means L1(r, g) := r2 I1(r, g) where

I1(r, g) =
1

2π

∫ π

−π

dθ

|g(reiθ)|2
, 0 < r ≤ 1. (3)

We remark here that each g ∈ H has angular limits on the unit circle. The
above integral originated from a special case of integral means considered by
Gromova and Vasilev in 2002 (see f.i. [7]). The estimate for this integral has
special applications in certain problems in fluid mechanics (compare [15, 16]).
Recently Ponnusamy and Wirths obtained sharp estimates of integral means for
some subclasses of A (compare [12]) which settled one of the open problems of
Gromova and Vasilev described in [7]. We find sharp estimates for L1(r, f ) when-
ever f ∈ Σ(p) and its subclass Up(λ). These are also the contents of Section 3.
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2 Criteria for univalency and some preliminary results

Let F and G be analytic in D. Now, a function F is said to be subordinate to G,
written as F ≺ G, if there exists a function w analytic in D with w(0) = 0 and
|w(z)| < 1, and such that F(z) = G(w(z)). If G is univalent, then F ≺ G if and
only if F(0) = G(0) and F(D) ⊂ G(D). In the following theorem we prove a
sufficient condition for univalence for f ∈ A(p).

Theorem 1. Let f ∈ A(p) with f (z)/z 6= 0 for 0 < |z| < 1. If
∣∣∣∣∣

(
z

f (z)

)′′
∣∣∣∣∣ ≤

(
1 − p

1 + p

)2

, z ∈ D,

then f is univalent in D.

Proof. Let f ∈ A(p) and since f /z is nonvanishing in D, then z/ f is analytic in
D and has an expansion of the form (2). From the given hypothesis,

∣∣∣∣∣−z2

(
z

f (z)

)′′
∣∣∣∣∣ ≤

(
1 − p

1 + p

)2

|z|2 <

(
1 − p

1 + p

)2

|z|, z ∈ D.

Therefore from the above inequality and applying the definition of subordination,
we have

−z2

(
z

f (z)

)′′

≺ z

(
1 − p

1 + p

)2

. (4)

Now for f ∈ A(p), let

p(z) :=
z

f (z)
− z

(
z

f (z)

)′

=

(
z

f (z)

)2

f ′(z).

Therefore, p is analytic in D. Also it is a simple exercise to see that

p(z) = 1 +
∞

∑
n=1

(1 − n)bnzn

and
p′(z) = −z (z/ f (z)) ′′ i.e. zp′(z) = −z2 (z/ f (z)) ′′ .

Now, by (4) we get

zp′(z) ≺ z ((1 − p)/(1 + p))2 .

By a consequence of a well known result of T. Suffridge (compare [9, p. 76, Theo-
rem 3.1d.]), we have

p(z) ≺ 1 +
1

2

(
1 − p

1 + p

)2

z

i.e.

(
z

f (z)

)2

f ′(z) ≺ 1 +
1

2

(
1 − p

1 + p

)2

z

⇒

∣∣∣∣∣

(
z

f (z)

)2

f ′(z)− 1

∣∣∣∣∣ <
1

2

(
1 − p

1 + p

)2

<

(
1 − p

1 + p

)2

.
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From the above inequality, we conclude that f is univalent in D by applying
[4, Theorem 1].

We now move on to present the absolute estimates for the Dirichlet integrals
∆(r, f ) and ∆(r, f /z) whenever f ∈ Σ(p) and 0 < r < p. We consider the sub-disc
Dp := {z : |z| < p} ( D. We see that each f ∈ Σ(p) has the Taylor expansion of
the form

f (z) = z +
∞

∑
n=2

anzn, z ∈ Dp. (5)

In 1962, Jenkins ([8]) proved that if f ∈ Σ(p) and has the form (5), then

|an| ≤
1 + p2 + · · ·+ p2n−2

pn−1
=

1 − p2n

(1 − p2)pn−1
, n ≥ 2. (6)

Equality holds in the above inequality for the function kp(z) = −pz/(z − p)
(1 − pz). Now for f ∈ Σ(p) we see that f /z is analytic in Dp. Therefore we
consider the area problem for the functions f /z whenever f ∈ Σ(p) and z ∈ Dp.
By using the Taylor expansion (5) for f ∈ Σ(p) and the Taylor coefficient estimate
(6) for |an|, we have for 0 < r < p,

π−1∆(r, f /z) =
∞

∑
n=1

n|an+1|
2r2n

≤
∞

∑
n=1

n

(
1 − p2n+2

(1 − p2)pn

)2

r2n

=
p2r2

(1 − p2)2

(
1

(p2 − r2)2
−

2

(1 − r2)2
+

p4

(1 − p2r2)2

)
.

Equality holds in the above inequality for the function kp. Thus we infer that,

max
f∈Σ(p)

∆(r, f /z) =
πp2r2

(1 − p2)2

(
1

(p2 − r2)2
−

2

(1 − r2)2
+

p4

(1 − p2r2)2

)

and the maximum is attained by the function kp. Here we observe that

lim
p→1−

max
f∈Σ(p)

∆(r, f /z) = 2πr2(r2 + 2)(1 − r2)−4,

which is same as the estimate obtained by Yamashita in (see [14, p.435]) for f ∈ S .
We also compute for 0 < r < p,

max
f∈Σ(p)

∆(r, f ) = ∆(r, kp) =
πp2r2

(1 − p2)2

(
p2

(p2 − r2)2
−

2

(1 − r2)2
+

p2

(1 − p2r2)2

)
.

As we pass through the limit p → 1−, the right hand side of the above expression
becomes πr2(r4 + 4r2 + 1)(1 − r2)−4. We see that this estimate is same as the
estimate obtained by Yamashita for the class S (Compare [14, (4), p.436]).
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3 Main Results

We are now ready to state our first result after all the above discussion.

Theorem 2. Let f ∈ Σ(p) and z/ f have a Taylor expansion of the form (2) in D. Then
for each r ∈ (0, 1], we have

max
f∈Σ(p)

∆(r, z/ f ) = πr2
(
(1/p + p)2 + 2r2

)

and the maximum is attained by the function kp(z) = −pz/(z − p)(1 − pz).

Proof. Let f ∈ Σ(p). We define g(z) = c f (z)/(c + f (z)) where −c /∈ f (D). It is
easy to see that g ∈ S , and has the following Taylor expansion

z/g(z) = z/c + z/ f (z) = 1 + (b1 + 1/c) z + b2z2 + · · · , z ∈ D.

Let D∗ ∋ ξ = 1/z, then F(ξ) = 1/g(1/ξ) ∈ Σ and F(ξ) takes the form

F(ξ) = ξ + (b1 + 1/c) + b2/ξ + b3/ξ2 + · · · , ξ ∈ D
∗.

Therefore, from the well known Gronwall’s area theorem applied to the above
function F, we have

∞

∑
n=1

n|bn+1|
2 ≤ 1. (7)

We also observe from the expansion (2) and (5) that b1 = −a2. Now using the
inequality (6) for n = 2, we have |b1| = | − a2| ≤ (1 + p2)/p. Therefore by (1)
and the expansion (2) we get

∆(r, z/ f ) = π
∞

∑
n=1

n|bn|
2r2n

= π

(
|b1|

2r2 +
∞

∑
n=1

(n + 1)|bn+1|
2r2(n+1)

)

≤ π

(
|b1|

2r2 +
∞

∑
n=1

2n|bn+1|
2r2(n+1)

)

≤ π

(
(1/p + p)2r2 + 2r4

∞

∑
n=1

n|bn+1|
2

) (
∵ |b1| ≤ (1 + p2)/p

)

≤ π
(
(1/p + p)2r2 + 2r4

)
(using (7))

= πr2
(
(1/p + p)2 + 2r2

)
.

Equality holds in the above inequality for the function kp ∈ Σ(p). This can be eas-
ily seen if we observe that for this function kp, we have b1 = −(1/p+ p), b2 = 1
and bn = 0 for n ≥ 3. Therefore, we conclude that

max
f∈Σ(p)

∆(r, z/ f ) = πr2((1/p + p)2 + 2r2).
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Remark. As p → 1−, the Dirichlet estimate in the above theorem is same as that
of [14, Theorem 1].

In the following theorem we prove a sharp estimate for the integral mean
L1(r, f ) where f ∈ Σ(p).

Theorem 3. Let f ∈ Σ(p) and have the form (2). Then we have

L1(r, f ) ≤ 1 + (1/p + p)2r2 + r4

and the inequality is sharp.

Proof. Let f ∈ Σ(p) and have an expansion of the form (2). Then

L1(r, f ) := r2 I1(r, f )

=
1

2π

∫ π

−π

∣∣∣∣
z

f (z)

∣∣∣∣
2

dθ = 1 +
∞

∑
n=1

|bn|
2r2n

≤ 1 + |b1|
2r2 +

∞

∑
n=2

(n − 1)|bn|
2r2n

≤ 1 + (1/p + p)2r2 + r4
∞

∑
n=1

n|bn+1|
2r2n−2 (∵ |b1| ≤ (1 + p2)/p)

≤ 1 + (1/p + p)2r2 + r4
∞

∑
n=1

n|bn+1|
2 (since 0 < r ≤ 1)

≤ 1 + (1/p + p)2r2 + r4 (by (7)).

Equality holds in the above inequality for the function kp.

Now in a similar fashion, we can deduce a sharp estimate for the integral
mean L1(r, f ) where f ∈ S . This is the content of the following theorem.

Theorem 4. Let f ∈ S and have the form (2). Then we have

L1(r, f ) ≤ 1 + 4r2 + r4

and the result is sharp.

Proof. Let f ∈ S and have the expansion (2). We then have from [6, Theorem 11,
p.193. Vol.2]

∞

∑
n=2

(n − 1)|bn|
2 ≤ 1.

Here we note that b1 = −a2 and from Bieberbach’s theorem we know that
|a2| ≤ 2, with equality if and only if f is a rotation of the Koebe function i.e.
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f (z) = kθ(z) = z/(1 − eiθz)2 where θ is real. Therefore from (3), we get

L1(r, f ) := r2 I1(r, f )

= 1 +
∞

∑
n=1

|bn|
2r2n

≤ 1 + |b1|
2r2 + r4

∞

∑
n=2

(n − 1)|bn|
2r2n−4

≤ 1 + 4r2 + r4
∞

∑
n=2

(n − 1)|bn|
2 (∵ |b1| = | − a2| ≤ 2 and 0 < r ≤ 1)

≤ 1 + 4r2 + r4

(
∵

∞

∑
n=2

(n − 1)|bn|
2 ≤ 1

)
.

Equality holds in the above inequality for the function f = kθ .

Remark. Here we remark that as p → 1−, the integral mean in Theorem 3 is same
as the integral mean that we obtain in Theorem 4 for the class S .

We now move on to the class Up(λ) and consider similar problems. In doing
so, we first prove the following Lemma which will be used to prove our main
results for this function class. We follow here the modified proof of [11, Lemma
1] and provide the details for the sake of completeness.

Lemma 1. Let f ∈ Up(λ) and have expansion of the form (2) for some 0 < λ ≤ 1 and
let t ≤ 2. Then we have

∞

∑
n=2

nt|bn|
2r2n ≤ 2tλ2µ2r4.

Proof. Suppose that f ∈ Up(λ). Then we have (see [4, Corollary 1])

|U f (z)| ≤ λµ|z|2, z ∈ D,

where

U f (z) := (z/ f (z))2 f ′(z)− 1 = −z (z/ f (z)) ′ + (z/ f (z)) − 1.

Now by the expansion (2) and the above inequality we get

∣∣∣∣∣
∞

∑
n=2

(n − 1)bnzn

∣∣∣∣∣ ≤ λµ|z|2.

Therefore, for z = reiθ and 0 < r < 1,

∞

∑
n=2

(n − 1)2|bn|
2r2n =

1

2π

∫ 2π

0

∣∣∣∣∣
∞

∑
n=2

(n − 1)bnzn

∣∣∣∣∣

2

dθ

≤ λ2µ2r4.
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From the above inequality we get that for each k ≥ 2, the inequality

k

∑
n=2

(n − 1)2|bn|
2r2n ≤ λ2µ2r4

is true. Now, we consider these inequalities for k = 2, 3, · · · , N, and multiply
the N-th inequality by the factor Nt/(N − 1)2, and for k = 2, · · · , N − 1, the k-th
inequality by the factor

kt

(k − 1)2
−

(k + 1)t

k2
> 0.

Now after adding all these modified inequalities, we get in the left hand side of
the inequality

N−1

∑
k=2

((
kt

(k − 1)2
−

(k + 1)t

k2

) k

∑
n=2

(n − 1)2|bn|
2r2n

)
+

Nt

(N − 1)2

N

∑
n=2

(n − 1)2|bn|
2r2n

=
N−1

∑
n=2

(n − 1)2|bn|
2r2n nt

(n − 1)2
+ Nt|bN|

2r2N

=
N

∑
n=2

nt|bn|
2r2n

and in the right hand side of the inequality, we get

λ2µ2r4

(
N−1

∑
k=2

(
kt

(k − 1)2
−

(k + 1)t

k2

)
+

Nt

(N − 1)2

)
= 2tλ2µ2r4.

As a result, we obtain the following inequality

N

∑
n=2

nt|bn|
2r2n ≤ 2tλ2µ2r4.

Finally, letting N → ∞, we have

∞

∑
n=2

nt|bn|
2r2n ≤ 2tλ2µ2r4,

which proves the lemma.

After plugging in t = 0 in the above Lemma, we get

∞

∑
n=2

|bn|
2r2n ≤ λ2µ2r4 (8)

and t = 1, we get

∞

∑
n=2

n|bn|
2r2n ≤ 2λ2µ2r4. (9)

We are now in a position to state the following Theorem:
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Theorem 5. Let f ∈ Up(λ) and have the form (2). Then we have

max
f∈Up(λ)

∆(r, z/ f ) = πr2
(
(1/p + λµp)2 + 2λ2µ2r2

)

and
L1(r, f ) := r2 I1(r, f ) ≤ 1 + (1/p + λµp)2r2 + λ2µ2r4.

The results are sharp for the function

fp(z) =
z

1 − z
p(1 + λµp2) + λµz2

, z ∈ D. (10)

Proof. Let f ∈ Up(λ). Then we have, |b1| ≤ 1/p+ λµp (Compare [4, Theorem 5]).
Now by (1) and (9) we have

∆(r, z/ f ) = π
∞

∑
n=1

n|bn|
2r2n

= π|b1|
2r2 + π

∞

∑
n=2

n|bn|
2r2n

≤ πr2(1/p + λµp)2 + π2λ2µ2r4

= πr2
(
(1/p + λµp)2 + 2λ2µ2r2

)
.

To prove the sharpness assertion, we observe that fp ∈ Up(λ) and for the same
function b1 = −(1/p + λµp), b2 = λµ and bn = 0 for n ≥ 3. Therefore it can be
easily seen that equality occurs in the above inequality for the function fp. Next
we wish to prove the second part of the theorem. In order to do so, we compute
using (3) and (8) that

L1(r, f ) := r2 I1(r, f ) = 1 +
∞

∑
n=1

|bn|
2r2n

≤ 1 + (1/p + λµp)2r2 + λ2µ2r4.

We also see here that the above inequality is sharp for the function fp.

Likewise for the analytic case, we also consider the classes of meromorphi-
cally convex ( abbreviated as concave) and meromorphically starlike univalent
functions in Σ(p) which we denote by Co(p) and Σ∗(p, w0) respectively. We

clarify here that for f ∈ Co(p), the set Ĉ \ f (D) is a compact convex set and

for f ∈ Σ∗(p, w0), the compact set Ĉ \ f (D) is starlike with respect to a point
w0 6= 0, ∞. The detailed discussion about these classes of functions can be found
from [1, 2, 3, 6]. Now we can deduce the following

Remark. Let f ∈ Co(p) ( Σ(p). Therefore,

max
f∈Co(p)

∆(r, z/ f ) ≤ πr2
(
(1/p + p)2 + 2r2

)
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and

L1(r, f ) ≤ 1 + (1/p + p)2r2 + r4.

As we know that kp ∈ Co(p), both the aforementioned results are sharp. Same
conclusion can be drawn for f ∈ Σ∗(p, w0) as kp also belongs to the class Σ∗(p, w0)

where w0 ∈
[
−p/(1 − p)2,−p/(1 + p)2

]
(see [5]).

Acknowledgement: The authors thank Karl-Joachim Wirths for his sugges-
tions and careful reading of the manuscript.
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